3rd Technical Workshop:
Gas Market Design and Natural Gas Transmission Grid Codes

The EU Experience of Gas Storage Operation. Technology, Market, Regulation.

Sergio Ascari
VIS Consultants
Vilnius, May 22nd, 2018
AGENDA

A. Overview of technology
B. Storage development in the European Union
C. Economic analysis – theory and EU practice
D. Regulatory approaches – theory and EU practice
E. The role of storage towards security of supply
OVERVIEW: WHAT IS STORAGE

• Storage activity performs injection of natural gas into facilities when supply > demand, and extraction (withdrawal) when demand > supply

• Usually the injection/withdrawal process is a seasonal cycle: injection during summer, and extraction during winter

• It is cheaper to store gas near markets than to build larger pipelines if production wells are “far away”

• Short-term cycles and non-cyclical operation driven by commercial opportunities are increasingly common, notably in advanced markets
OVERVIEW: TECHNOLOGY

• Facilities: underground geological formations (depleted oil/gas fields, aquifers, and salt cavities), LNG sites.
• Strong technical links with production activities (know-how, equipment, sites).
• Storage activity is characterized by:
 – medium-term horizon in development (2-6 years)
 – long-term horizon in operation (20-40 years)
 – high capital intensity
 – limited economies of scale
Storage site scheme (depleted fields or aquifers)
OVERVIEW: PERFORMANCES

• Storage facility performance: space, injection and withdrawal rates (deliverability)
• May increase performance by raising pressure within limits
• Deliverability also increases with more wells
• Peak deliverability falls as working gas is used up
 – Low deliverability at end of winter season
OVERVIEW: STORAGE TYPES

- Depleted fields: large space / slow injection and withdrawal
 - Depleted fields are by far the most dominant and cheapest if available
- Aquifers: similar, more costly
 - require larger investment, notably in non-recoverable gas needed to achieve reservoir pressure (base or cushion gas)
- Salt cavities: less space, faster injection and withdrawal
 - higher costs than other depleted fields and aquifers
- LNG: little space, slow injection, fast withdrawal (mostly used for peak shaving, short term cycling)
 - LNG facilities are far smaller by space but more flexible and fast
Storage plants by type in EU28, 2016:

Working Gas (Bcm)

- Aquifer: 67.2
- Depleted field: 16.8
- Other: 15.2
- Salt cavern: 4.4

Withdrawal capacity (Mcm/day)

- Aquifer: 914.7
- Depleted field: 631.9
- Other: 254.5
- Salt cavern: 78.6
OVERVIEW: STORAGE FUNCTIONS

• Flexibility / load management
 – Seasonal fluctuations
 – Demand peaks
 – Weekly cycle
 – Daily cycle

• Balancing of transmission networks

• Emergency reserve in case of supply failures

• Curbing price fluctuations (buffer role)

• Exploiting price fluctuations (commercial or speculative role)
COMPETING FLEXIBILITY TOOLS

• Production flexibility
 – most effective if close to market, e.g. in U.K., Netherlands
 – production wells are normally less flexible

• Import flexibility
 – most effective if close to market, e.g. from Norway into NW Europe
 – normally more expensive, but this may change for mature infrastructure

• Linepack
 – usually a substitute for short-term swings only

• Customer interruptions
 – notably of power producers, large industry
STORAGE AND OTHER FLEXIBILITY TOOLS IN ADVANCED MARKETS

• Virtual storage (or parking)
 – A market service offering similar performances but based on a combination of flexibility tools
 – Market players are interested in the performance of services rather than on how these are provided

• Spot gas markets
 – may provide flexibility services in a better way even if users do not know how

• Regulation of storage only - rather than of flexibility services - may distort the market and prevent innovation
POLICY ANALYSIS OF STORAGE: MAIN ISSUES

• Is storage adequately provided by markets?
• Is regulation necessary, or is there enough competition?
 – Between storage companies
 – By other flexibility services
 – Is regulated monopoly more efficient (cheaper) than under competition?
• Should some “strategic” inventories be mandatory to ensure security of supply?
DO MARKET PLAYERS PROVIDE STORAGE? (1)

• The private sector tends to provide seasonal storage to cope with demand fluctuations (*intrinsic value*):
 – as a function of winter-summer spreads
 – (in fact, also) as a function of available flexibility alternatives

• The private sector tends to provide (mainly fast, low-cost) facilities to cope with short-term market volatility (*extrinsic value*)
 – Mainly LNG tanks and salt caverns
Storage development in REGULATED and Negotiated regimes

Data in Million Standard Cubic Meters. Source: Gas Storage Europe
DO MARKET PLAYERS PROVIDE STORAGE? (2)

- Total EU available WG increased by 50% between 2006 and 2016 – whereas both consumption and production declined
- Similar development in regulated and negotiated regimes
- In some cases facilities are used mostly by foreign markets, e.g. Western Austrian sites by Germany
DO MARKET PLAYERS PROVIDE STORAGE? (3)

• In the past, several integrated companies provided relatively large storage capacity
 – May have overstated risk of supply cuts,
 – Could pass through costs to users

• Hence incumbents may have inherited lower cost facilities

• Newcomers may have invested more after market liberalization, as TPA to existing sites (controlled by incumbents) was difficult

• But, building facilities is only half of the story. They must be refilled every year!
WHAT DRIVES STORAGE FILLING?

- Winter/summer spread
 - Generally declining since 2007
- Hub price volatility
- Availability and costs of other flexibility sources
 - Part of production flexibility was recently lost in DE, NL, UK, DK
 - Expiration of long term contracts may reduce the opportunity to use import flexibility
- Legal storage obligations (policy measures)
REGULATION VS. COMPETITION

- Negotiated prices work only if competition is provided by other storage operators or other flexibility
- If substitutes are weak, TPA regulation is necessary
- Gas storage is a potentially competitive industry, but in practice it may be an essential facility
- Most European countries moved from high-market concentration to growing cross-border competition, as access to pipelines became easier
Most EU Member States have chosen Regulated TPA (12/19).
But MSs under Negotiated TPA have 67% of capacity.
Some countries have hybrid elements, e.g. negotiated access subject to security-related obligations (e.g. France, Czech Rep., Denmark).
MARKET DESIGN AND LEGAL REQUIREMENTS

• Storage has long been bundled with transport
• Bundled service may be more efficient but less transparent, discourage competition
• Few transmission operators still control storage (e.g., Italy, Spain, Belgium); most sites controlled by gas suppliers
• European Directive (2009/73/EC):
 – TPA to storage required
 – TPA may be negotiated or regulated
 – Legal, functional and administrative unbundling
• Guidelines of Good Practice issued by European regulators (non binding)
THE PRICE EVOLUTION

• If competition works, prices should converge

• Average prices of “bundles” up by 49% between 2004 and 2012 (based on 10 countries)
 – Some convergence achieved, dispersion decreased

• Higher prices for new, costly facilities (e.g. small salt caverns, aquifers)

• Low prices in some (but not all) Central & Eastern Member States, due to lower historical costs

• Some variability of prices (including for regulated sites) may be due to sharp differences in cushion gas valuation

• Regulated storage prices increased more, no longer cheaper (on average 5% more pricey than negotiated, as of 2012)
Storage prices in REGULATED and Negotiated regimes

Analysis limited to comparable sites and «bundled» products, i.e. annual storage with injection/withdrawal capacity aligned with average site performance
Source: REF-E, EC Project, 2015
LATE MARKET EVOLUTION

- Prices generally declined in the last five years
- Differentiated products increasingly offered
- Capacity more often allocated by auctions
- Prices of storage products sometimes related to W-S spreads
- Operators see reduced margins:
 - sometimes seeking regulatory protection
 - Some facilities mothballed due to lack of demand
SHOULD GAS STORAGE BE MANDATORY FOR SOS?

• YES:
 – Profit-oriented players may underestimate risk of supply disruptions
 – The visible (intrinsic+extrinsic) value of storage is only a part; insurance value neglected
 – Security of supply burden may fall on consumers

• NO:
 – Storage obligations are expensive, and risk is often overstated by authorities
 – Suppliers are interested in keeping flows going and will properly insure against outages
 – Strategic storage & obligations may be ineffective as some commercial storage is “crowded out”
STORAGE-RELATED SECURITY OF SUPPLY MEASURES

- Storage obligations: Minimum levels to be filled by suppliers and/or TSOs, usually before winter season
 - Required in ES, FR, DK, PL, SK, HU, BG, CZ
 - Mandatory inventories not for general market usage
- Strategic storage: separate sites/volumes controlled by government
 - Required in IT, HU
- In other countries, reserve role is played by commercial rather than strategic storage
STORAGE-RELATED SECURITY OF SUPPLY MEASURES: SELECTED EXAMPLES

<table>
<thead>
<tr>
<th>Member State</th>
<th>Total mandatory storage obligation (Latest available, TWh)</th>
<th>Total strategic storage (Latest available, TWh)</th>
<th>Total mandatory storage (% of 2013 consumption)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>0,0</td>
<td>0,0</td>
<td>0%</td>
</tr>
<tr>
<td>Germany</td>
<td>0,0</td>
<td>0,0</td>
<td>0%</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0,0</td>
<td>0,0</td>
<td>0%</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>2,3</td>
<td>0,0</td>
<td>3%</td>
</tr>
<tr>
<td>Poland</td>
<td>9,3</td>
<td>0,0</td>
<td>5%</td>
</tr>
<tr>
<td>Denmark</td>
<td>2,3</td>
<td>0,0</td>
<td>5%</td>
</tr>
<tr>
<td>Spain</td>
<td>18,1</td>
<td>0,0</td>
<td>5%</td>
</tr>
<tr>
<td>Italy</td>
<td>0,0</td>
<td>48,3</td>
<td>7%</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>2,6</td>
<td>0,0</td>
<td>9%</td>
</tr>
<tr>
<td>France</td>
<td>97,9</td>
<td>0,0</td>
<td>20%</td>
</tr>
<tr>
<td>Hungary</td>
<td>23,8</td>
<td>12,6</td>
<td>24%</td>
</tr>
</tbody>
</table>

Source: REF-E and others on behalf of EC, 2014
COULD MORE STORAGE REDUCE COSTS OF CRISES? (1)

- ENTSOG (2014) “Stress Test” study shows that in the worst analyzed scenarios (6 months without Russian gas, followed by a cold spell):
 - LNG plays largest role in matching disruption (33%)
 - followed by storage (28%)
 - Total gas deficit: 22%, almost entirely covered by more costly fuels
 - In case of crisis, LNG and other spot prices tend to increase and stay high

Japan (Fukushima) 2011-12

Ukrainian crisis, January 2009
COULD MORE STORAGE REDUCE COSTS OF CRISES? (2)

• Using more gas purchased before the crisis at lower prices
• Larger storage endowments tend to soften price spikes
• EC Study (by REF-E and others, 2015):
 – Calculated costs and benefits of extending Storage Measures for SoS throughout the EU
 – Costs of generalized Storage obligations and strategic storage are always larger than probability-weighted benefits at EU level, even for high assumed probabilities (5% prob. of all-Russian disruption)
THANKS FOR YOUR ATTENTION!

sergio.ascari@eui.eu