A perspective Energy Transition

Dr. Andrea Lovato

Real Events !

Acwa Power

 Mogens North in South Greenland

 Glacier of Forni, Italian Alps (Valtellina)

Where are we and where we will go?

Targets:

- Long-term temperature goal keeping the rise in mean global temperature to well below 2 °C (3.6 °F) above pre-industrial levels, and preferably limit the increase to +1.5 °C (2.7 °F).
- > Emissions should be reduced as soon as possible and reach net-zero by 2050.
- CO_{2 and Other greenhouse gases} Emissions: **30** Gtons/a 2020 → **21.1** Gtons/a 2030 (?) → **0.0 NetZero** Gtons/a 2050 (?)
- > Total generation: 26,800 TWh (approx. 22% renewable) (2021)
- > Hydrogen: 70 Mton/a (practically all gray)

What does this mean to sustain Net-zero (EIA data):	2030	2050
Renewable: yearly additional Capacity (Wind / Solar)	≈15,000 TWh (50%)	≈ 45,000 TWh (90%)
Investment:	≈ 260 BUSD/a	≈ 800 BUSD/a
Green Hydrogen:	≈ 150 Mtons/a	≈ 470 Mtons/a
 New electrolyzers capacity 	≈ 850 GW	≈ 2,600 GW
Investment:	≈ 165 BUSD/a	≈ 800 BUSD/a
➢ H2 Co-firing in Power (% capacity):	up to 6% (2035)	(?)
Low carbon shipping (% of capacity):	up to 50% (2035)	100% (?)
Low carbon aviation (% of capacity):	up to 50% (2040)	(<u>;</u>)
Forestation		
 EV transportation 		

> others means

Good News - Renewables and Green H₂ are good for the Economy and Energy Indipendece

Renewables – Predictable and fixed prices until end of the plant life. Tariffs referrers to lowest tariffs in certain regions with good resource and financing conditions;

- Solar photovoltaic: in the range of 1.1 to 2.1 USDc/KWH;
- Wind On-shore: in the range of 2.5 to 3.5 USDc/KWH;
- Wind Off-shore: in the range of 6.5 USDc/KWH;
- Dispatchable Solar (24/7): in the range of 7.1 USDc/KWH;
- BESS (up to 4 hours): in the range of 5 to 6 USDc/KWH

Fossil fuel – Subject to variable price of fuel (tariff below based on average gas and coal prices with cost of fuel included);

- CCGT: in the range of 7 to 11 USDc/KWH;
- Coal: in the range of 3.5 to 6.0 USDc/KWH;
- Oil fired: over 10 USDc/kWH.

What about Green Hydrogen ?

- 2000: 1,000 USD/MWH;
- 2015: 250 USD/MWH;
- 2021: 100 USD/MWH;
- 2030: 50 USD/MWH or approx. 2 USD/kg (parity with Oil at average price)
- 2035: 25 USD/MWH or approx. 1 USD/kg (parity with Gas at average price)

(*) @ best applicable conditions of resources, land availability and financing costs

Establishing balance between Demand and Supply for Green Hydrogen is Catch 22

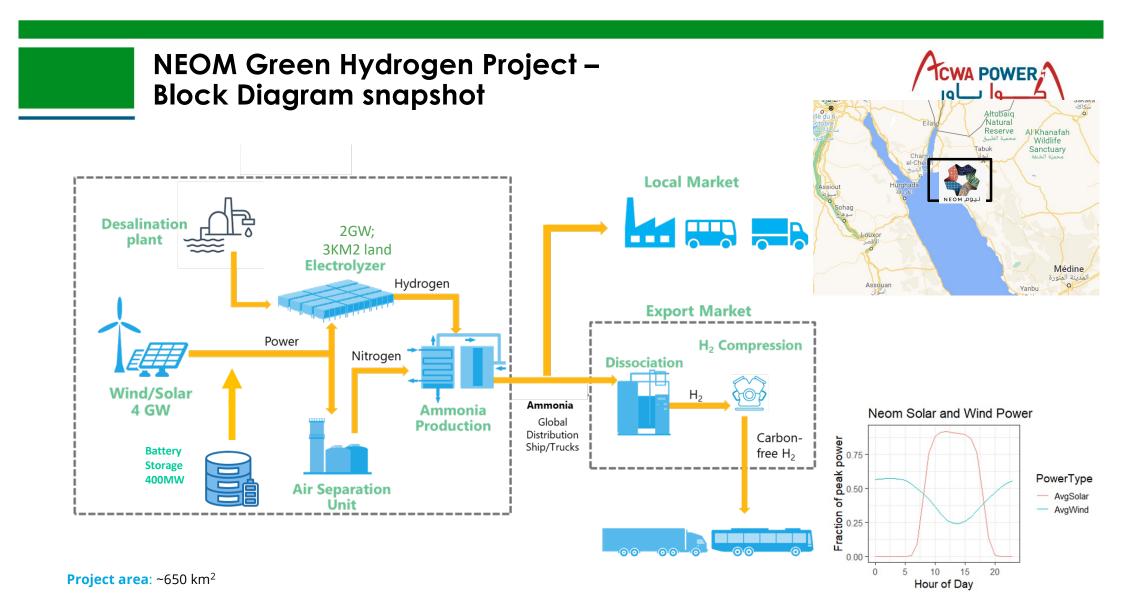
NZE 2050 Projects 550 MT

850 GW of electrolyzers required by 2030 (IEA NZE-2030)

To date, the current pipeline of projects suggest that only 5-8 Mt of electrolytic hydrogen shall be met by 2030 Vs target of 80Mt.

- Uncertainty Factors:
 - Parity Price
 - Fossil fuels
 - Electrification
 - Readiness
 - Technology Readiness
 - Infrastructure Readiness
 - Policy and Regulation Readiness
 - Supply chain
 - Volumes
 - Supply &
 - Demand side

		Off-take potential in terms of volume, price, readiness	Price Readiness Volume competitiveness
hydrog and me Limited alterna	Existing large market for hydrogen especially ammonia and methanol Limited decarbonization alternatives aside from green H2 and CCUS	Ammonia (Fertilizer)	
		Methanol (Chemicals)	
		Steel (DRI)	
	Rapidly developing especially for heavy transpiration. Tough competition for Light vehicles from BEV. Infrastructure required for FCEV For shipping and aviation, limited options for decarbonizations.	Synthetic Fuels (Aviation)	
		Heavy Duty Vehicles	
Transport		Shipping	
EU targetir require NG temperatu Refining se major role	Heating is an emerging market in EU targeting industries which require NG for heating at higher temperatures (glass).	Heating (Blending in gas grid)	
	Refining sector – NG shall have major role, followed by blue and to limited extent green hydrogen	Refining (Green hydrogen is deemed limited up to 5MT by 2030)	
		Less favour	rable 🕘 🌗 More favourable


Where are we with Green Hydrogen?

GW Scale Green Ammonia Production – NEOM Green Hydrogen Project

ACWA Power, in cooperation with partners, has studied the possibility to produce green ammonia at commercial scale, exclusively from renewable energy sources, in a pristine location for combined wind and solar.

Value chain step	Design Capacity & Outputs	Sea Water Desalination		Carbon Free Renewab Power	le	Power Storage
Solar & Wind Capacity	Approx. 4 GW	sea water Desalination		(Solar & Wind)		rower storage
Energy storage	Battery storage to manage the intermittency on base load processes		Water Electrolysis – Hydrogen		Air Separation Unit – Nitrogen	
Transmission system	Internal grid / Connection to main grid			_		1
Seawater desalination	Commercial scale plant powered by renewables	Hydrogen storage				Nitrogen storage
Hydrogen storage	Couple of hours of pressurized storage capacity in underground pipelines			Ammonia		
Air Separation (N ₂) + Ammonia Loop	1.25 Mtpa	Electricity Water Hydrogen		Ammonia Storage		
		Nitrogen		+		
		Ammonia		Ammonia Transportatio	on	

Je vous remercie Danke Дякую Asante рақмет сізге Teşekkürler 前謝 」」。 市部的 「」」。 Tahmat Təşəkkürlər mihi koe 管 00000 Tahmat Təşəkkürlər अन्यवाद Thank you Terima kasih Ngiyabonga

www.acwapower.com