Power System Stability Challenges in the Renewable Integration Process

Role of Inertia, International Tendencies and Potential Regulatory Considerations

2022.02.09.

István Táczi PhD Candidate, Budapest University of Technology and Economics

WME

Content

- Effects of the generation portfolio changes
 - Global key facts
 - Inertia reduction
- Power system stability in a nutshell
- International practice
 - European Network of Transmission System Operators Electricity (ENTSO-E) key learnings
 - MIGRATE H2020 project
 - Classification of systems by size
- Mitigation possibilities technology
- Mitigation possibilities markets
- Regulatory considerations

Global trends & physical effects

- IEA In 2021, 290 GW new renewable capacity \rightarrow 50% is PV
- Between 2020-2026, the newly installed renewable capacity will equal the current fossil&nuclear capacity (4800 GW)
- Synchronous generator directly coupled electromechanical system
 - The electrical frequency is determined by the mechanical speed of the rotating machine
 - The kinetic energy of the rotating mass -> synchronism, angle stability, swing equation
- Power electronic converter interfaced generation (PV, wind)
 - Decoupled from the system \rightarrow no inherent frequency response
 - The electrical parameters are determined by controlling

Reduction of inertia - physics

Static equilibrium:

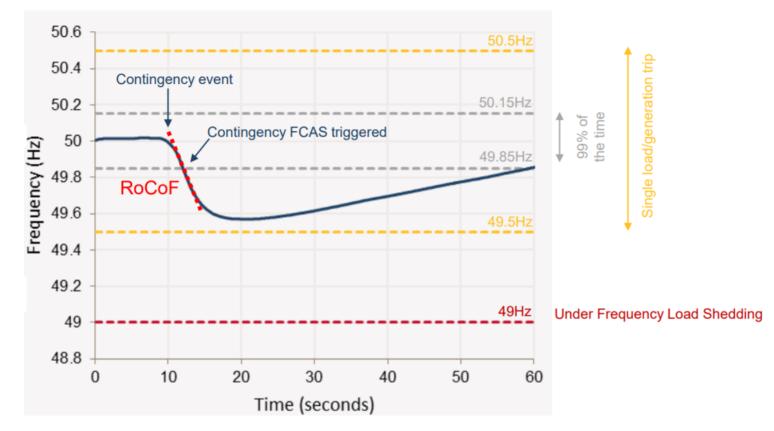
 $P_G = P_M = P_F(+P_V)$

Dynamic equilibrium:

$$P_G = P_M - P_F = \frac{d(E_{K.E.})}{dt} = \frac{d(\frac{1}{2}J\omega_R^2)}{dt}$$

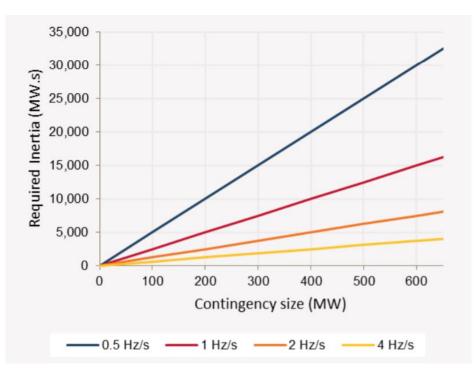
Kinetic energy of the rotating mass:

$$\frac{1}{2}J * \omega_n^2 = H_i * S_i$$


Inertia constant and rate of change of frequency:

$$\frac{2H}{\omega_n}\frac{\omega_R}{\omega_n}\frac{d\omega_R}{dt} = \frac{2H}{f_n}\frac{f_R}{f_n}\frac{df_R}{dt} = ROCOF$$

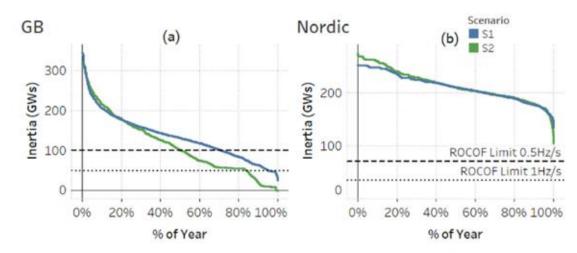
Rate of Change of Frequency


 Possible contingencies – generation/load outage, loss of import/export, network faults (short-circuits)

WME

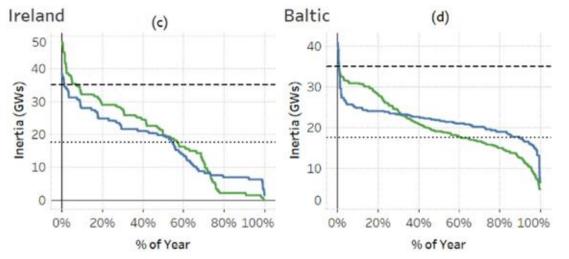
Inertia & ROCOF

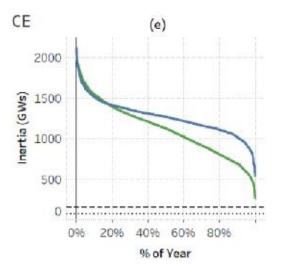
- Y axis: Minimum Inertia (MWs) → acceptable ROCOF
 - Inertia limits ROCOF
- Contingency size \rightarrow increases ROCOF
- Linear dependency \rightarrow H inertia constant (slide 4)



Initial RoCoF depends upon:

$$RoCoF = \frac{50Hz}{2} \times \left(\frac{Contingency \text{ size (MW)}}{System \text{ inertia (MW.s)}}\right)$$

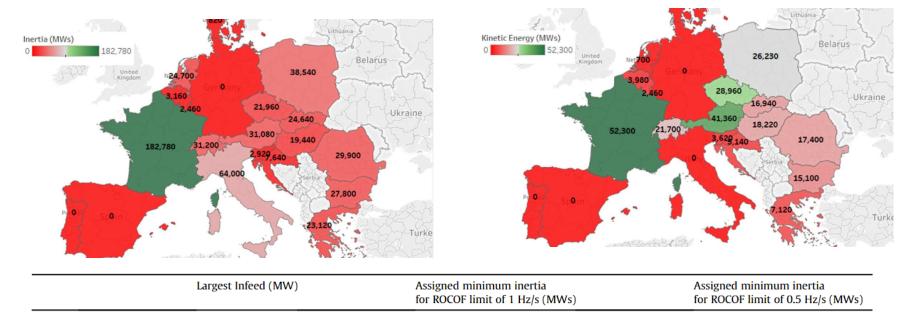

Reduction of inertia



2 scenarios – difference in inertia

Scenario	1	2
Basis	ENTSOE Vision 1	ENTSOE Vision 4
Electricity Demand (TWh)	3434	3616
Variable Renewable Capacity (GW)	388	614
Fuel Prices (€/GJ):	9.5	7.2
Natural Gas	17.3	13.3
Oil	3.0	2.2
Coal		
CO₂ Prices (€/Tonne)	17	76
Merit Order	Coal before gas	Gas before coal

Y axis steps → system size Limits for ROCOF depends on system size CE&Nordic → ROCOF under 0.5 Hz/s Other systems → restrictions apply



Reduction of inertia – CE trends

Inertia by country in the CE

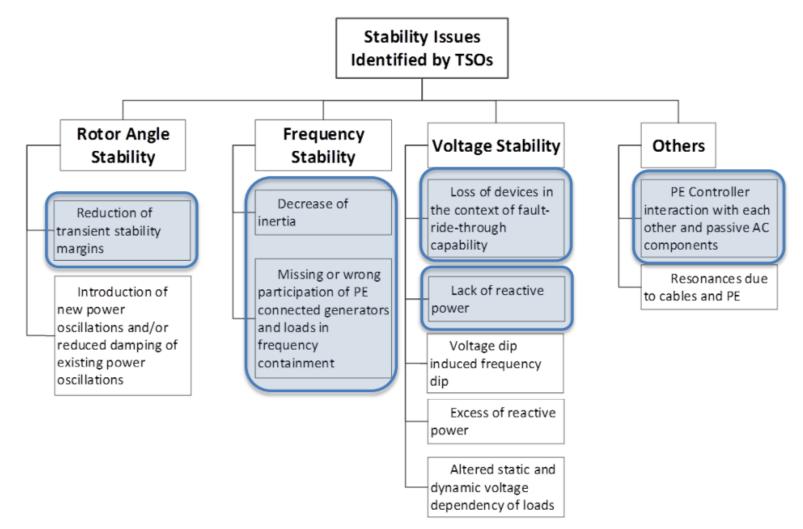
3000

- Note that on the right the scale is $\sim 1/3$
- Zero values → worst case hour, then these coutries run 100% on wind+solar

75,000

CE

150,000


WME

ENTSO-E studies

- 2015-2017 \rightarrow inertia reduction included in 3 key areas
 - Continetal Europe interconnected system analysis
 - Even with a normative incident of 3 GW generation loss, the system state not considered critical
 - In case of system split \rightarrow frequency stability is critical
 - In case of 20% imbalance 500 mHz/s 1 Hz/s transients observed
 - Future system 40% imbalance, 2 Hz/s gradient
- Analysis of 6 incidents (2003 ITA, 2006 GER, 2007 GRE, 2012 & 2015 TUR, 2016 AUS) → ROCOF over 1 Hz/s
 - East-West system split
 - Iberian Peninsula system split

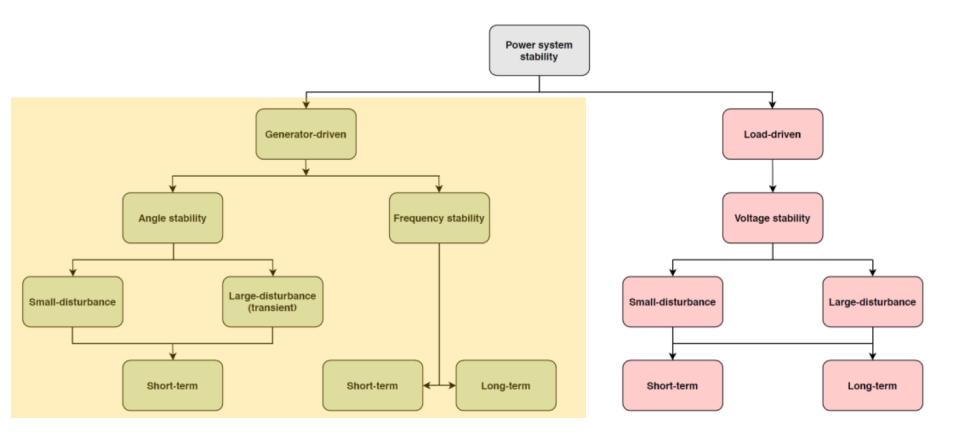
MIGRATE H2020 Project

International practice

- Limits in the grid codes for ROCOF
 - Measured on 500 ms timeframe
 - 0,5-2 Hz/s
- Mitigation methods technical/market
 - IRL/GB/AUS/NZL/Nordic/CE
- Great Britain National Grid
 - 2015: 0.5 Hz/s technical condition assessment
 - Reserve needs could be 3-4 times as now
 - New products e.g. Enhanced Frequency Response
- Ireland EIRGRID&SONI
 - Different RoCoF constraints from 2010
 - 2016: system minimum kinetic energy definition

International practice

- Australia AEMO
 - Major blackout in 2016: RoCoF limit proposition
 - New products e.g. synthetic inertia, fast response regulation
- New Zealand
 - 2014: Revised load shedding scheme
 - Effect of wind turbines RoCoF extremis could double
- Nordic countries
 - 2013: online inertia estimation for all countries
 - 2016: modelling harmonization no direct threat



Power system stability

- According to general definitions, an electric power system is stable if it has the "ability [...], for a given initial operating condition, to regain a state of operating equilibrium after being subjected to a physical disturbance, with most system variables bounded so that practically the entire system remains intact"
- Important aspects:
 - Parameter frequency, voltage, angle etc.
 - Size of the disturbance
 - Calculation method

Stability categories

Classification by system size

System Size	Examples	Connections	Observation	Focus Area
Large scale, interconnected	Continental Europe, Nordic countries	Multiple AC connections within a synchronous area	Calculations do not show significant operational challenges, further studies on increasing non-synchronous share is in progress	System splits
Large scale, island	Ireland, Great Britain, Australia	No synchronous connection (only through HVDC or other converter solution) or very limited, weak connections	Calculations show operational challenges, TSOs already address solutions	Outages (HVDC, generator)
Small scale, island	Hawaii, Microgrids	No synchronous connection (only through HVDC or other converter solution), or very limited, weak connections	Wider limits, severe disturbances already observed, different measures for operation	Outages, faults

🛞 VME

Mitigation possibilities - technical

- Synchronous condensers/compensators
- New controlling mechanisms
 - Fast Frequency Response
 - Synhtetic/artificial/augmented/virtual inertia
 - Exploitation of fast-acting technologies, such as storage
 - Market based / connection or operation requirement?
- Operation constraints
 - Minimum inertia requirements in system operation
- New protection schemes/integration of demand side response

Mitigation possibilities - market

Ireland example

Short	Name	Response			
New products					
SIR	Synchronous Inertial Response	Instant			
FFR	Fast Frequency Response	2 s, 8 s duration			
RM1	Ramping Margin 1 Hour	1 h, 2 h duration			
RM3	Ramping Margin 3 Hour	3 h, 5 h duration			
RM8	Ramping Margin 8 Hour	8 h			
FPFAPR	Fast Post-Fault Active Power Recovery	250 ms after fault, 90% of rated power			
Available products					
POR	Primary Operating Reserve	5-15 s (at frequency nadir)			
SOR	Secondary Operating Reserve	15 s, 90 s duration			
TOR1	Tertiary Operating Reserve 1	90 s, 5 min duration			
TOR2	Tertiary Operating Reserve 2	5 min, 20 min duration			
RRD	Replacement Reserve (De-synchronised)	20 min, 1 h duration			
RRS	Replacement Reserve (Synchronised)	20 min, 1 h duration			

Mitigation possibilities - market

Texas example

Short	Name	Response time
SIR	Synchronous Inertial Response	instant
FFR1	Fast Frequency Response	0,5 s, 10 min duration
FFR2	Fast Frequency Response	0,5 s, unlimited
PFR	Primary Frequency Response	1,5 s, 16 s full activation, 1 h duration
Reg	Regulating Reserve	4-6 s, 5 min-ig full activation, 20 min duration
CRS	Contingency Reserve Service	5 min, 10 min full power, 1 h duration

Regulatory considerations

- Regulators should define and support the development of calculations and actions which allow significant renewable generation connection
- Challenges depend on system size
 - Large-interconnected concentrate on system splits
 - Low level of interconnections operation constraints even now
 - Microgrids completely new area
- TSOs must assess the effects of the generation portfolio changes on frequency stability → ENTSO-E: 2 years
 - Long-term system adequacy plans
- Toolsets for TSOs
 - Piloting through sandboxes \rightarrow technical viability
 - Market development \rightarrow new products
 - Grid codes \rightarrow system security ensured
- Development of technical calculation methods \rightarrow research entities
- Technology providers \rightarrow piloting in practice

References & readings

- <u>Effects of decreasing synchronous inertia on power system dynamics—Overview of recent experiences and marketisation of services https://onlinelibrary.wiley.com/doi/full/10.1002/2050-7038.12128</u>
- European Network of Transmission System Operators for Electricity (ENTSO-E): Frequency Stability Evaluation Criteria for the Synchronous Zone of Continental Europe – Requirements and impacting factors, 2016. <u>https://www.entsoe.eu/Documents/SOC%20documents/RGCE_SPD_frequency_st_ability_criteria_v10.pdf</u>
- European Network of Transmission System Operators Electricity: Inertia and Rate of Change of Frequency (RoCoF), System Protection and Dynamics Inertia Task Force, 17. verzió, 2020. <u>https://eepublicdownloads.azureedge.net/cleandocuments/SOC%20documents/Inertia%20and%20RoCoF v17 clean.pdf</u>
- European Network of Transmission System Operators Electricity: Frequency Stability in Long-term Scenarios and Relevant Requirements, Project Inertia Team, 2021. <u>https://eepublicdownloads.azureedge.net/cleandocuments/Publications/ENTSO-E%20general%20publications/211203 Long term frequency stability scenarios for publication.pdf
 </u>
- <u>https://www.h2020-migrate.eu/downloads.html</u>
- <u>https://www.sciencedirect.com/science/article/pii/S0360544220308835</u>

Thank you for your kind attention!

István Táczi

Budapest University of Technology and Economics, Hungary

taczi.istvan@edu.bme.hu

