

Status-quo of Hydrogen Utilization in NG COM Member Countries

Roundtable input by Mongolia Erdenetsetseg Bayarsaikhan ERC, Licensing department

ERRA Natural Gas Markets and Economic Regulation Committee January 25, 2025 / 18th Meeting (Online)

Policy Level

• Does your country/organization have a strategy regarding hydrogen?

Category	Description	End-use	
1	End-use applications with no or few known and feasible decarbonisation alternatives besides green hydrogen	Heavy duty mining trucks	
2	End-use applications with various known and feasible decarbonisation options, of which green hydrogen could have strategic advantages	Public transport (buses) in Ulaanbaatar	
3	End-use applications with various known and feasible decarbonisation options, of which green hydrogen is currently not the most advantageous option	Space heating	No ado deo Thi deo

- Remote locations
- Few other decarbonization options
- Technical advantages
- Energy security aspect
- Other potential decarbonization options (battery)
- Technical advantages

Not viewed as a feasible option at present, but additional research looking at various other decarbonization option is requested. This should particularly further investigate the decoupling of the heat and power sectors

Industry/Market Level

- What is the general interest in developing hydrogen networks/markets in your country from the supply side and how many companies have been involved (in rough terms)?
 - Energy sector >> largest contributor to GHG emissions (54% in 2018)
 - The heat & power sector is the main energy consuming sector
- Power and heat sectors are closely coupled
 - Dominated by coal-fired CHP plants (90.6% of electricity in 2019)
 - Heat and power demand is not necessarily aligned >> technically challenging to integrate renewables to the power system
 >> leads to curtailments even at low shares of RE
- Green hydrogen **could play a role** in the gradual decoupling of the heat and power sectors

Industry/Market Level

Green hydrogen production potential

- Division of four geospatial regions
 - Full load hours for wind and solar considered
- Wind results
 - Larger potential in the south (up to 4200 load hours)

generation costs as low as 3.7 \$cent/kWh

Green hydrogen production costs

	MNG1	MNG2	MNG3	MNG4
Full load hours (PV and wind)	2,800	3,600	5,000	4,200
Electricity cost (\$/kWh)	0.058	0.044	0.041	0.043
Demineralised water cost 2020 (\$/m ³)	30	40	40	25
Expected H ₂ cost (\$/kg)	4.73	3.83	3.30	3.40

• PV results

0

• More homogenous

generation costs as low as 4.9\$cent/kWh

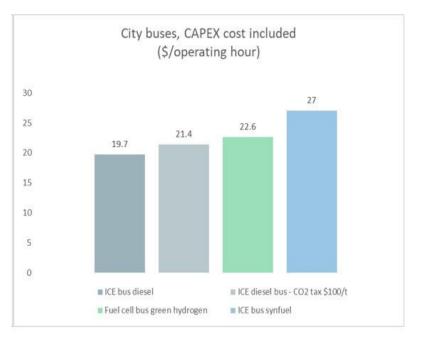
4 |



Sector	Technology	Reference	
Heavy duty transport in the mining sector	Hybrid dumper trucks in a copper mine	Diesel trucks	
Public transportation	Hybrid buses in Ulaanbaatar	Diesel buses	
Heating sector	Decentralized heating (H ₂ boilers)	LPG	

Feasibility in hard-to-abate sectors

- Assumed region 3 (mining region)
 - H₂ cost of \$3.3/kg
- Reference: new diesel trucks
- Comparison: energy delivered to the wheel
- Hybrid truck is **12% more expensive**
 - Assuming a CO₂ tax of \$100/tCO₂, hybrid truck becomes 9% cheaper than diesel trucks
- Production sufficient to supply six trucks


Mining trucks, cost of operation (\$/kWh)

Feasibility results: public transport

- Reference: new diesel buses
- System can supply 450 buses (1/2 of current fleet)
- OME considered as a second alternative
 - Not economically feasible
- Hybrid bus is
 - 28% more expensive than diesel in terms of delivered energy
 - 15% more expensive, also considering CAPEX
- A CO₂ tax of \$100/tCO₂ makes the hybrid bus close to cost competitive

Feasibility results: decentralized heating

- H₂ must be pressurized at 200 bar and stored in gas • cylinders
- Comparison: energy delivered to the stove
 - Includes cost for filling, storing and distribution
 - >> disadvantage for H₂
- In terms of delivered energy, H₂ is **148% more** expensive than LPG
- Synfuel is **33% more expensive** than LPG
- The lower energy density of H₂ limits its potential

0.6

0.5

0.4

0.3

0.2

0.1

0

LPG

Cost comparison for decentral heating and

Green hydrogen Methanol (synfuel)

Suggestions for Upcoming Benchmarking Study

Suggestions related to the upcoming benchmarking exercise – scope, questionnaire, paper

- Future areas of research
 - More robust water availability analysis
 - Further comparisons with other decarbonization options
 - Preparation of specific projects (mining sector)
 - Analysis on decarbonization options for the heating sector and the decoupling of the power and heat sectors

?THANK YOU응FOR YOUR ATTENTION!

erdenetsetseg.b@erc.gov.mn

https://erranet.org/