Decarbonizing Germany's heating sector* Presentation for ERRA, March 2024

Ralf Dickel, Senior visiting research fellow, OIES (mail: <u>dickel.ralf@t-online.de</u>) * Beend on OIES mener ET 20

* Based on OIES paper ET 29

From IPCC report on 1.5°C to the German CPA*

BVG (Constitutional Court) ruling of 29.4.2021 on original CPA (of 2019)

- Followed IPCC report on 1.5°C: keeping with 1.5°C = keeping a CO2 budget of 570 Gt CO2 *
- Germany can not claim more than its share in global population (ca 1%)
- The original CPA disadvantages younger generations, because it is not stringent on CO2 reductions now, resulting in a higher burden later
- => amended CPA (18.8.2021): stricter limits, binding net zero for 2045

CPA neutral on

- possible technical approaches:
 - (i) saving (ii) CO2 free energy (iii) fossil with CCS (iv) DAC /CDR for much later
- ways of implementation:

(i) standards (ii) Pigou taxes to compensate for damages or subsidizing costs for avoiding emissions (iii) cap and trade (Coarse theorem)

^{*} CPA = Climate protection act

^{**} as of 2015 (with GMST- global mean surface temperature- method, 66 percentile likelihood)

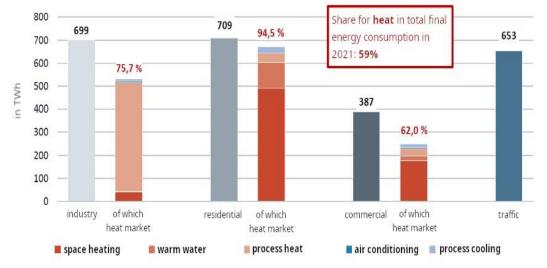
Policy making and regulation of decarbonization

- Avoiding climate damage is a global public good/ externality, addressed by NDCs*
- German CPA: net zero by 2045 time is of the essence
- Issues for policy making / regulation:
 - Technology approach and instruments to cover externalites like climate, reliability (policy) Most decarbonization technologies need some infrastructure (power, CH4/H2, DH, CO2)
 - What infrastructure is neded (policy)
 - What infrastructure to be regulated, or left to market forces (contestability)? (policy)
 - Coordination between infrastructures (policy/ regulation)
 - Regulation of specific infrastructures (regulation)
- Potential pitfalls: overlaps / gaps in responsibility ; politicians tend to shift responsibility to regulators, TSOs, markets

* NDC: Nationally Determinded Contributions

The heat sector in Germany

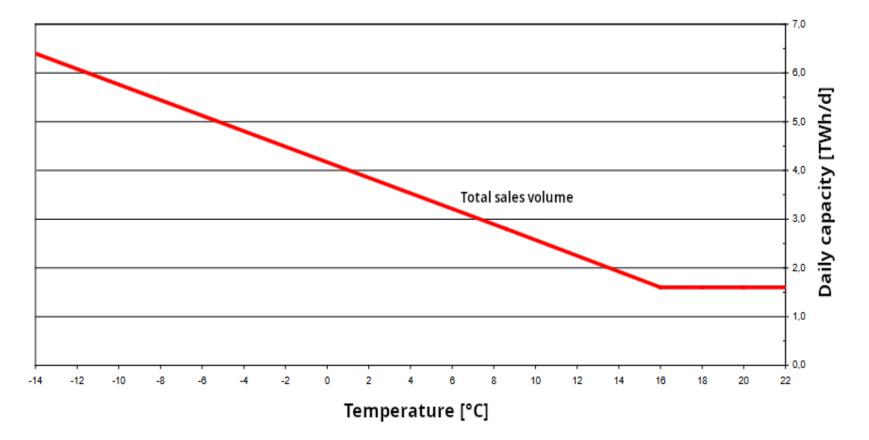
In 2021 heat is 59% of overall final energ consumption, traffic another 30%


Industrry:

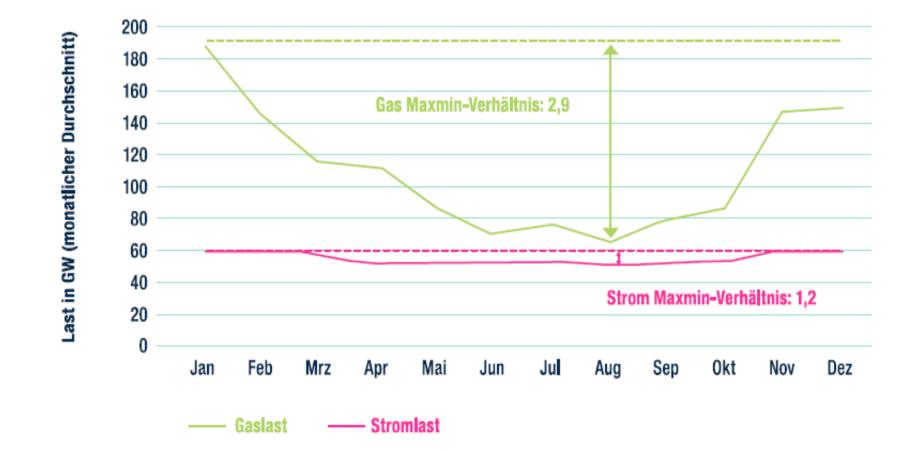
- Heat is 75.7% of final energy in industry
- Dominated by process heat (100°C to 1500°C)
- Not dependent on ambient temperature

Residential and Commercial:

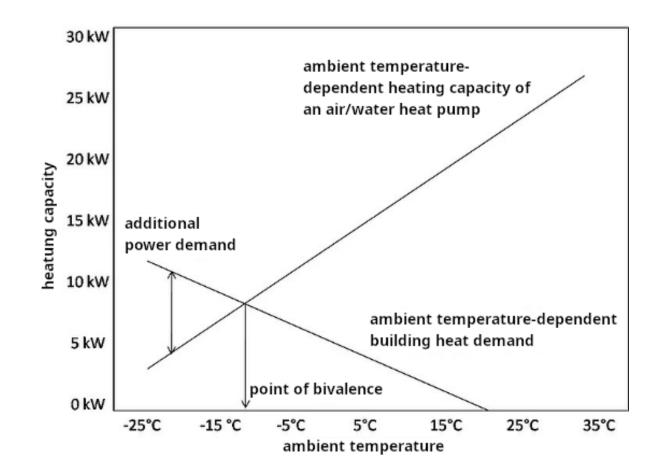
- Heat + warm water: 94.5% / 62% in res. / com.
- Dominated by space heat and warm water (< 100°C)
- Strong dependence on ambient temperature Net zero CO2- de facto zero CO2- implies:
- No goo (oil oo final on argu unloss doorthon
- No gas/oil as final energy unless decarbonized
- Gas with CCS as primary energy needed to cover shortfalls of renewables in volumes and reliability
- => Gas has no future as final but as primary energy


What share did the heating market have in the final energy consumption of the individual sectors in 2021?*

source: BDEW, AG Energiebilanzen, own calculations as of 12/2022


* preliminary, adjusted for changes in stocks of heating oil

Temperature dependence of space heating

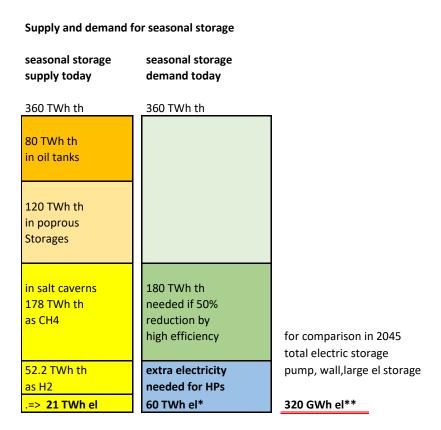

Derived from Möller, A., Zander, W. (2002, November 18) p. 4

German seasonal demand for power and gas

DVGW 2022 p. 11

Point of bivalence of air-to-water heat pumps

Greenhouse Media GmbH (2022, December 20)


Seasonal heat demand in Germany

Principal issues:

Space heat and warm water, demand for heat< 100°C Space heat demand a linear function of ambient temperature

Storage volume to cover seasonal demand:

Seasonal demand requires high seasonal storage volumes Seasonality of demands stays, changes by insulation and HP Present gas storage plus oil tanks cover seasonal demand BUT not enough when operated on hydrogen

* assuming 3 kWh th / kWh el for mix heat pumps

** The double line at the bottom exaggerates the electric storage volume Source: own compilation

Heating of buildings : status and decarbonization at heating point

Status:

- Stock in 2019: 19 million buildings, 9.5 m gas heated, 6 m oil heated
- Gas distribution grids 550 000km. DH grids 33 000 km

Options to decarbonize at the point of heating:

- individual heat pumps a must for 5 million oil heated buildings, BUT not feasible for 15 million buildings
 - All renewable: lack of seasonal storage, power grid bottlenecks, too slow roll out of renewables*, heat pumps
 - 15 million HPs plus local fossil power with CCS: local power bottlenecks, limited roll out of HPs, unnecessary high power capacity to back HPs, wasted possibilities of cogeneration and use of CO2 free sources for DH

Pragmatic approach for 10 million gas heated buildings: (i) 50% switch to DH, (ii) 50% switch CH4 to H2

- (i) Expand DH systems to supply 4-5 million buildings (in high energy density areas, with a must connect policy) requires a doubling or tripling of DH grids, very ambitious, but feasible
- (ii) For the rest: Switch gas distribution grid to CO2 free hydrogen (95% of grid is H2 ready, H2 ready appliances available, quarter by quarter switching not trivial but feasible)
- * See OIES paper ET 13

Heating of buildings: decarbonization of energy input

Options to decarbonize the energy input to the point of heating:

1. Heat pumps:

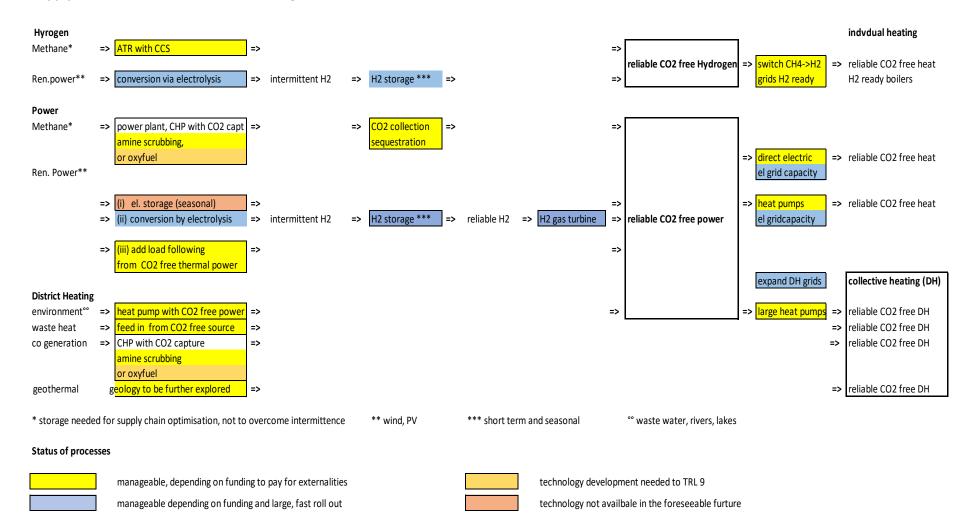
CO2 free power needed: Increase renewable production, use back up power from fossil with CCS,

2. DH systems:

CO2 free input like geothermal, large HPs (from waste water, rivers, projects lakes, up to 100 MW, standardization useful, waste from decarbonized industrial heat, CHP with CCS (power and heat demand in sync)

3. Switch CH4 to H2

Switch gas distribution grids to CO2 free hydrogen (95% H2 ready), availability of green / blue Hydrogen?


CCS needed for all three options:

- For reliable power / heat supply for HPs / DH under 1. and 2.: CHPs with CCS
- as basis for blue Hydrogen under 3.

=> include CO2 collection now : may or may not be regulated

collection by pipeline contestable by ships; no grid character, a CO2 pipeline smaller than overall market

Supply chains for reliable, CO2 free heating

power / power	power / gas	power /H2	power / DH	power / CO2
local vs national upgrade	transport of winter capacity	use power grid for local elctrolysis	use of cogeneration	CO2 collection for thermal
invest for north South debottling	via gas grid or power grid	vs H2 system	geothermal avoids power upgrade	decarbonized power
for HPs by ren / CHPs with CCS	gas to power with CCS	H2 grid for H2 ready turbines	power supply for large HPs	CO2 free, dispatchable power
	power for compression			close to consumption
	gas / gas	gas / H2	gas / DH	gas / CO2
	keepiimg national gas grid	conversion from CH4 to H2	gas CHP	gas plusCHP with CO2 collection
	to transport high capacities	local and ? National	beyond DH reach switch CH4-H2	instead of H2 grid plus H2 turbines
	(winter peks, season)	locatoion of ATRs	keep gas distribution grid in reserve	
	keep distribution grids	rededicating? Differene in capacity		
	as back up	H2 needs ca 4x compression		
	convert to H2	H2 ready turbines vs. decarb gas power		
		H2/H2	H2/DH	H2 / CO2
		H2 is manufactured product (green/blue)	H2 grid beyond DH reach	location of ATRs
		local vs a national grid	use exhaust heat from electrolysers	at customer or at import
		load of ATRs central plus storage vs local	for DH	
		H2 stroage only in caverns, only 1/3		
			DH / DH	DH / CO2
			local by neture	from CHPs with CCS
Interfaces and trade off			possibility for heat storage	
between	various grids		large vs small DH	
				CO2 / CO2
				by grid, contested by ships
				disposal in Norway
				CO2 can be pumped
				(cheaper) in super critical stage

Early actions needed / robustness

In keeping with the CO2 budget (to avoid costly desasters) there is no credit line by nature => effectivenes first, efficiency second

- Early actions
 - No time for consecutive testing out, paralell building of avenues
 - Target final design, use of upfront economies of scale
 - Secured market for CO2 free energy supply (due to CPA) => investment into upfront economies of scale is a financing issue

- Robustness

- Diversification of approaches
- Use of existing investment (to save time and avoid risks)
- Keep it regional if possible

Pour ce qui est de l'avenir, il ne s'agit pas de le prévoir, mais de le rendre possible

Antoine de Saint-Exupéry