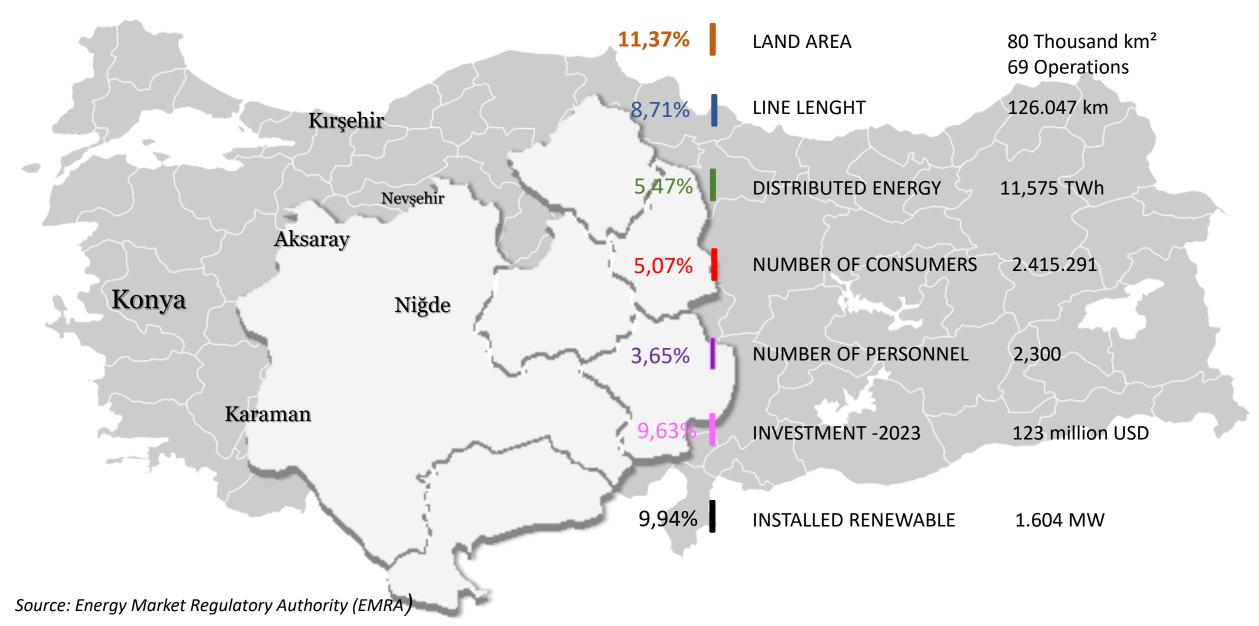


Renewable Energy Impact on System Cost

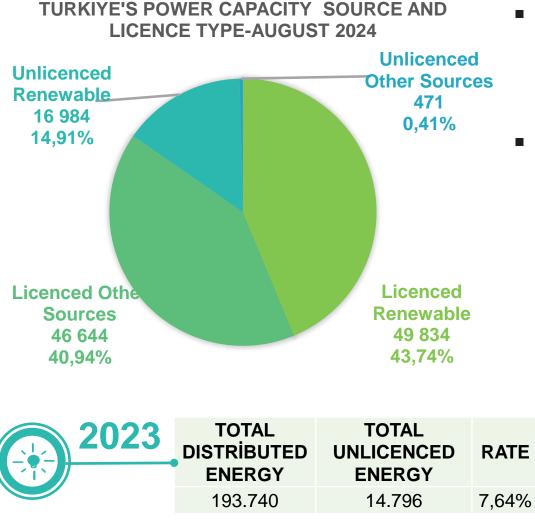
H. Coşkun TUNÇEZ / Meram Electricity Distribution Company

6-7 November 2024, İstanbul

Renewable Generation in Distribution Level


- **02** Renewable Effect On Distribution Costs
- **03** Renewable Energy Impact Of System Cost
 - Application and Technical Evaluation
 - Cost of New Connections to the Distribution Network
 - Balance and Settlement Operation Costs
 - Difficulties in Operation and Maintenance
 - Network Stability Costs

01

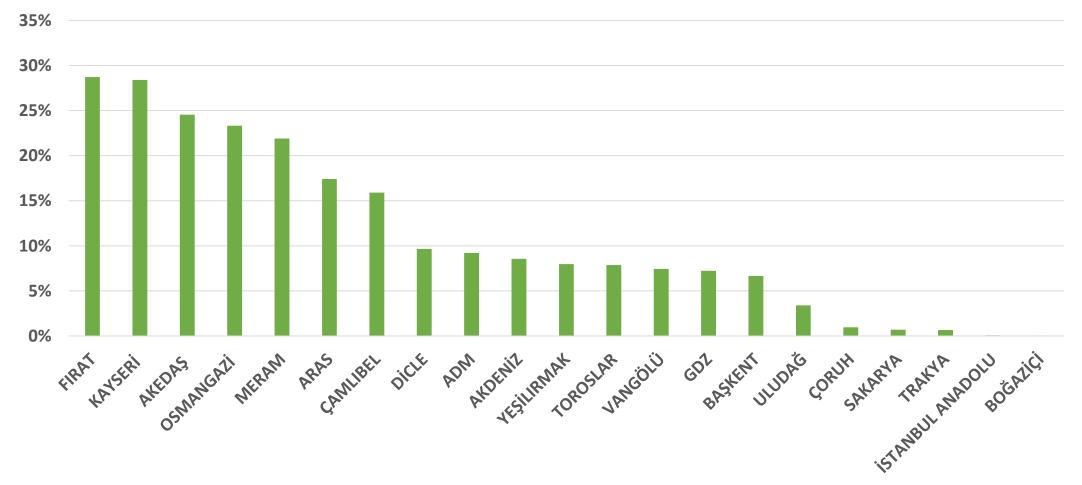

- Reactive Energy Compansation
- Reactive Power Support and Voltage Control
- Effects on Technical Losses
- **04** Tariff & Distribution Fee Structure (Distribution Level)
- **05** Renewable Effect on Distribution Revenue

A Quick Glance at MEDAŞ

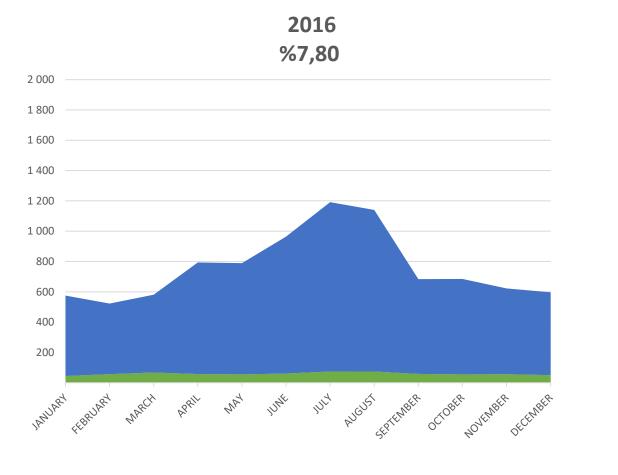
Renewable Generation in Distribution Level

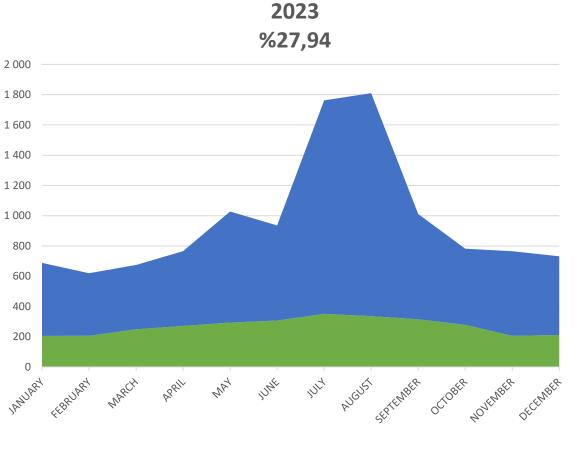
- All unlicensed connections are at distribution voltage level. 97,1% of unlicensed installed capacity is renewable
- 7,64% of the total distributed energy in Turkiye is provited/purchased from distributed renewable generation. The share of renewable energy in distributed energy is expected to continue to increase.

Why we think so;


- Increase in energy prices.
- Increase in «end user» prices,
- Dramatic reduction in renewable investment costs,
- The growing of micro-scale battery storage solutions
- Government subsidies and incentives
- Other regulations of the regulator regarding renewable energy

Share Of Renewable Energy in Distributed Energy By DSO



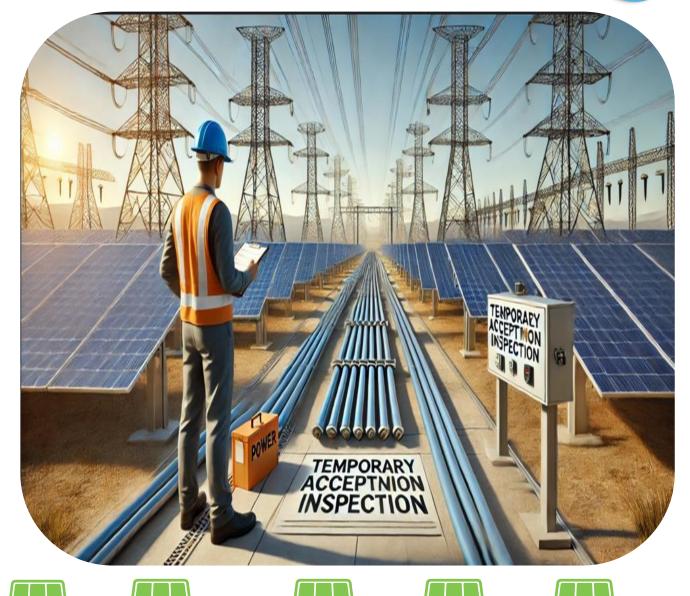

Renewable Effect on Distributed Energy-MERAM Case

TEIAS

Renewable

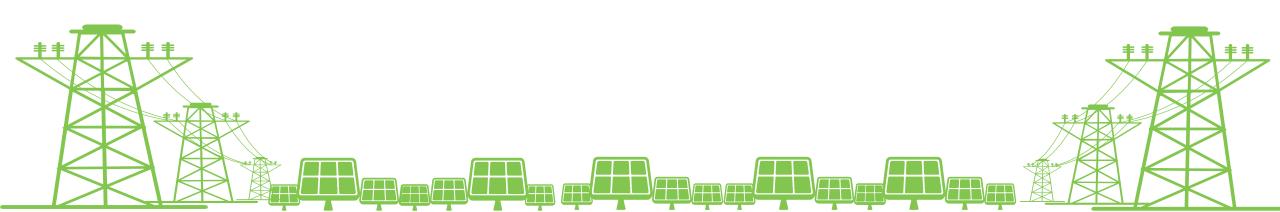
■ Renewable ■ TEIAS

Renewable Effect on Distribution Costs

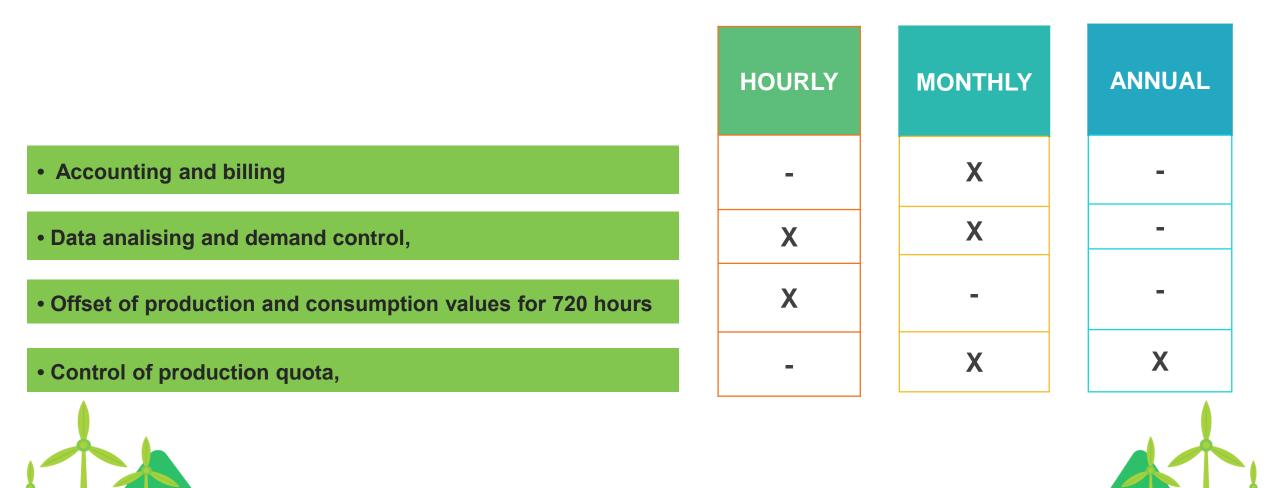


	OPEX- CAPEX	DSO	Investor /Prosumer Cost	
Before Connection	Application and Technical Evaluation	OPEX	\checkmark	\checkmark (Fixed Application Charge)
	Project Approval and Temporary Acceptance	ΟΡΕΧ	\checkmark	\checkmark (Fixed and Variable Charge)
	Cost of New Connections to the Distribution Network	САРЕХ		✓ (Grid Construction Costs)
	Balance and Settlement Operation Costs	ΟΡΕΧ	\checkmark	✓System Operation Fee-Distribution ✓ System Operation Fee – Incumbent Supply Company
	Difficulties in Operation and Maintenance	OPEX	\checkmark	
After	AMR and SCADA Operation Costs	OPEX / CAPEX	\checkmark	\checkmark
Connection	Network Stability Costs (Battery Energy Storage Systems)	CAPEX / OPEX	\checkmark	\checkmark
	Reactive Energy Compansation (Reactor and capacitor inv.)	CAPEX / OPEX	\checkmark	
	Effects on Technical Lost	T&L Performance	\checkmark	

Application and Technical Evaluation


- Application Fee
- Project approval, temporary acceptance procedure, etc)
 - 50% of the income generated is taken into account in the revenue requirement.
 - According to generally accepted tariff rules, special costs which are collected from the user who caused the cost.

Cost of New Connections to the Distribution Network



- The connection line for connecting the power plant to distribution network is constructed/founded by the investor. (Overhead lines or cables, Expenses for obtaining the necessary official permits for the project...)
- After the provisional acceptance, the DSO is responsible for their operation and maintenance.

Balance and Settlement Operation Costs

Difficulties in Operation and Maintenance (Inc. AMR and SCADA Infrastructure)

- Increase at new energy plants connection, increases network operating costs. Moreover, these connections are not ordinary connections.
- Each new connection brings problems such as voltage fluctuation and reactive power limit problems.
- In order to detect and solve this problem, the network must be monitored in real time. Due to the increase in new renewable plants, SCADA and field teams need to be increased.
- More connection points increase opex, even with the same line length.
- As renewable resources directly increase operating costs, this must be one of the drivers of variable operating expenses.

Network Stability Costs

- At the distribution voltage level, renewable energy connections cause voltage spikes.
- Energy Storage Systems(ESS) are critical in 1,02 ensuring the voltage balance of the network.
- EMRA has approved 34.752 MW new Storage Associate Pre-License. 6.000 MW of this capacity is at the distribution voltage level.
- Although ESS is required in Renewable Production Pre-License Applications approved by EMRA, DSOs also have to invest in ESS to contribute to the balancing of the system.

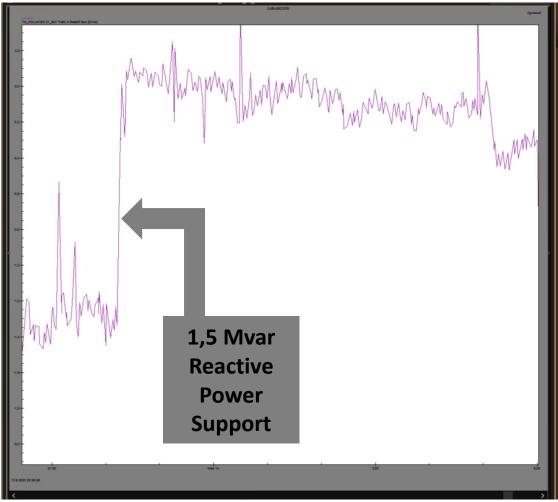
Reactive Energy Compansation

MEDA

It's becoming harder to manage reactive energy...

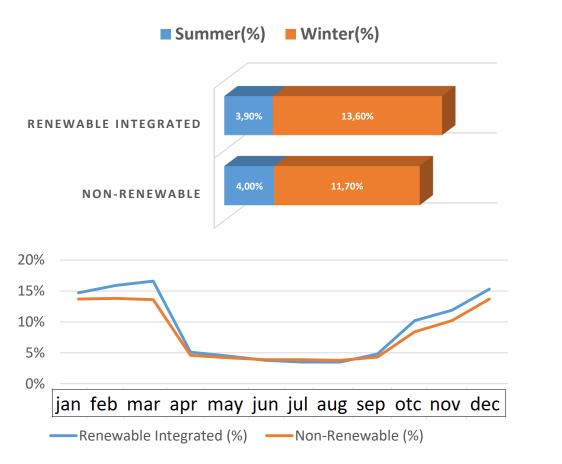
	Before Renewable	After Renewable
Active Energy Consumption(TSO)	100	100
Active Energy Generation (Renew.)	0	-60
Net Active Energy Consumption	100	40
Cap. Reactive Energy Consumption	10	10
Threshhold Ratio	15%	25%
Compansation Penalty(To TSO)	NO	YES

- DSO may face penalties despite no change in total reactive energy, due to reduced transmitted active energy from distributed generation
- To avoid these penalties, lower step-range compensation investments are required.

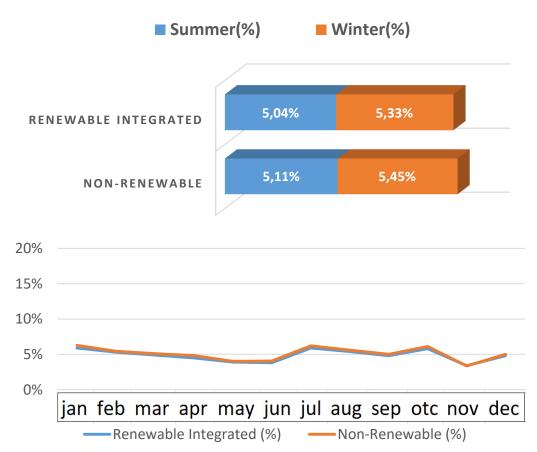

Reactive Power Support and Voltage Control

Investment or Reactive Power Support?

With the support of EMRA, the R&D study on "Providing reactive power support from Renewable Energy Power Plants" was completed. According to the results of this research;


	Reactor Investment	Reactive Power Support			
Reactor Investment (M\$)	60	Jupport			
		-			
Technical Loss (MWh)	3.427	1.298			
Maintenance Cost (M\$)	0,02	0,04			
Unit Cost of Tec. Loss(\$/Per MWh)	33	100			
Total Reacitve Energy (MVARh)	24.820	7.811			
Total Cost-Per Year(M\$)	0,20	0,13			
*Reactor lifetime ise 30 years, Invertor life time is 10 years					
* In both cases, reactive energy is kept within limits by necessary compensation.					
*Reactive power support helps keep the voltage within limits because the					
generation plants are distributed.					

- In both cases, reactive energy is kept within limits by necessary compensation.
- Reactive power support helps keep the voltage within limits because the generation plants are distributed.


Effects on Technical Losses

A NEGATIVE SCENARIO - EFFECT OF RENEWABLE ENERGY ON MONTHLY LOSSES

Date	Total Loss	Total Load	Rate
Non-Renewable	1.040	20.214	5,15%
Renewable Integrat	1.081	20.214	5,35%

A POSITIVE SCENARIO - EFFECT OF RENEWABLE ENERGY ON MONTHLY LOSSES

Date	Total Loss	Total Load	Rate	
Non-Renewable	653	12.513	5,23%	
Renewable Integrat	623	12.513	4,99%	

Tariff & Distribution Fee Structure (Distribution Level)

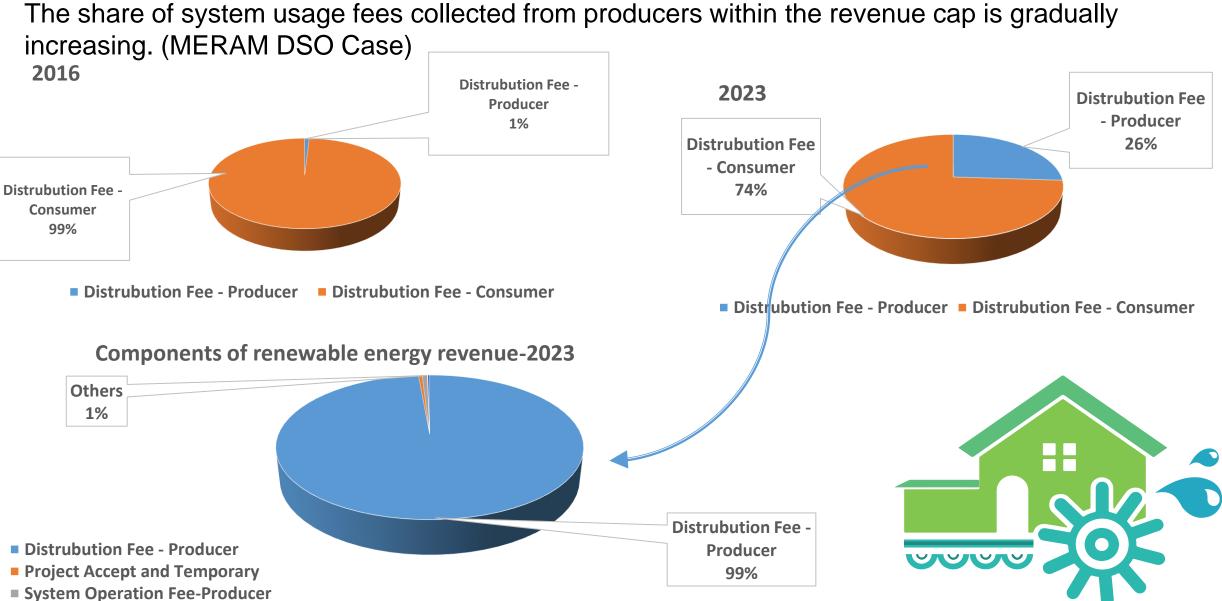
EPDK tarafından onaylanan ve 1 Temmuz 2024 Tarihinden İtibaren Uygulanacak Vergi, Fon ve Pay Hariç Tarifeler								
Üreticiler İçin Veriş Yönünde Çift Terimli Dağıtım Tarifesi Dağıtım Tarifesi						Terimli		
	Kapasite Dağıtım Dağıtım						Dağıtım	Reaktif
	Güç Bedeli	Güç Aşım Bedeli	Bedeli		Reaktif Ener	ji	Bedeli	Enerji
Üretici	kr/Ay/kW	kr/Ay/kW	-		kr/kVARh	Üretici	kr/ kWh	kr/kV/Rh
	2.528,63	5.057,27			196,689	5	23,0911	196,6895
Lisanssız Üreticilere İlişkin Tek Terimli Dağıtım Tarifesi								
Lisanssız	Lisanssız Üretici-1					117,16	06	196,6895
5346 Sayılı Kanunun Eki I Sayılı Cetvelin (e) Bendi Kapsamındaki Lisanssız								
	Üreticilere İlişkin Tek Terimli Tarife							
Lisanssız	z Üretici-2					36,93	22	196,6895

Prosumer Type	Export (kWh)	lmport (kWh)	Distribution Fee- Export(DFE) (TL/kWh)	Distribution Fee Import (DFI) (TL/kWh)
	100	100	-	100 * DFI * 0.5
Onsite	150	100	50 * DFE	100 * DFI * 0.5
Onsite	100	150	-	(100 * DFI * 0.5) + (50 * DFI)
	100	100	100 * DFE	100 * DFI
Offsite	150	100	150 * DFE	100 * DFI
	100	150	100 * DFE	150 * DFI

Licenced generation

Unlicenced generation - Dollar Based Feed-in Tariff

Unlicenced generation - Energy price-based Feed-in Tariff


- At offsite location, distribution usage fees are charged for both production and consumption.

-At onsite location, 50% discounted distribution usage fee is charged for netmetered consumption.

- In DSOs with many onsite plants, distribution fee discounts reduce revenue

Renewable Effect on Distribution Revenue

Final Thoughts

- MEDAŞ
- The paradigm has shifted; 'prosumer' instead of 'consumer' is outdated. Perhaps we could say 'Prostormer' instead.
 - System usage fees for prosumers are impacting revenue balance,
 - Managing the grid has become much more challenging and costly following the integration of renewable energy.
 - Collecting renewable energy management costs from all customers is not fair.
 - Renewable energy grid investments are funded by the investor, but their impact on other

opex/capex costs is essential for system balance.

Thank You