

Energy Regulatory Commission Office of the Energy Regulatory Commission

Session IV:

FACILITATING INNOVATIVE TECHNOLOGIES FOR ENERGY TRANSITION

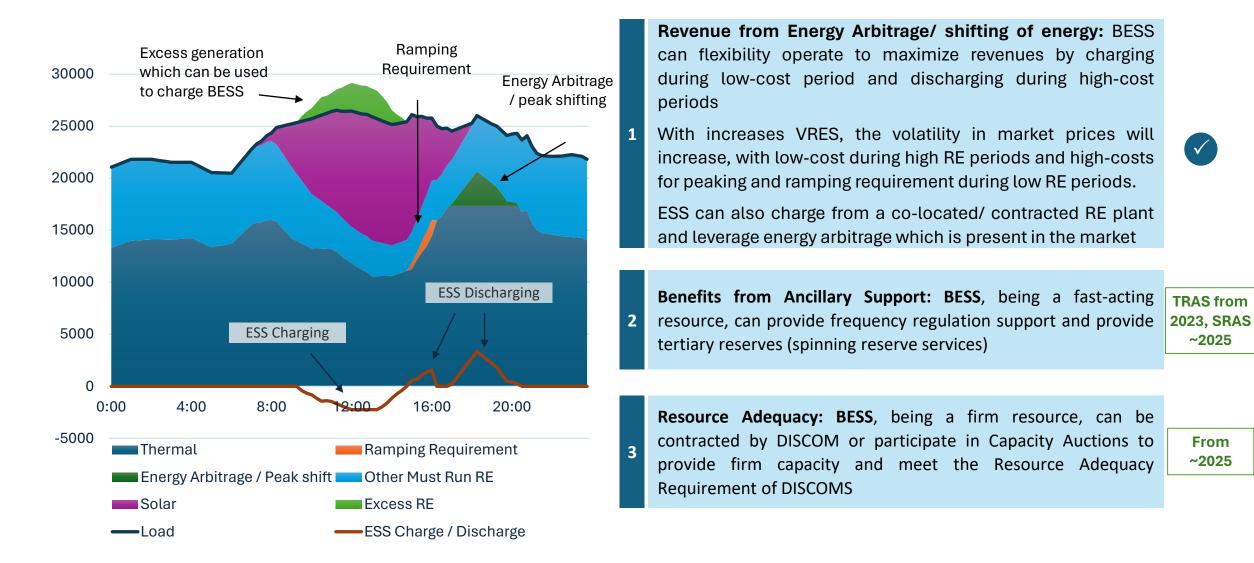
Sandboxing case study on Approval for BESS investments and Market Coupling

Anish Mandal

Deloitte Touche Tohmatsu India LLP

Sandboxing: Approval for BESS investments

Standalone BESS vs alternate models


0

1

A single BESS system can offer multiple services, which can be stacked to derive maximum economic for the asset

Deloitte.

Standalone BESS

✓ Status check

Α

Analysis of recent BESS tenders in India: Summary of recent BESS tenders

BESS		2021	20)22	2023		2024		Comis-	Project	Discovered Tariff			
Procurer	Size	H2	H1	H2	H1	H2	H1	H2	sioning Year	Duration	INR/ MW/ year	Comments		
Kerala state (KSEB)	10 MW/ 20 MWh	Sep	>	Apr				>	2025	~36+ months	135 lakhs (w/o VGF)	 Stuck at Regulatory Approval due to high cost discovered at the tendering stage 		
UP state (UPPCL)	5 tenders of 10 MW/ 40 MWh			>>	ust	Auct	ion 		> 2025	~24 months	69 lakhs (~30% VGF)	 Stuck/ delayed due to quality and experience of winning bidder 		
New Delhi (BRPL& GEAPP)	20 MW/ 40 MWh				June	>	Mar		2024	~12 months	58 lakhs (~17% VGF)	 LOA awarded by BRPL to winning bidder; lowest tariff discovered in India at the time Regulatory Approval provided in April, 2024 		
Gujarat state (GUVNL)	250 MW/ 500 MWh					Nov			2025	TBD	54 lakhs (0% VGF)	 Bid opening in February 2024, new lowest tariff discovered in India so far Round 2 for the same capacity announced in March 2024 		

Project GEAPP – Case Study

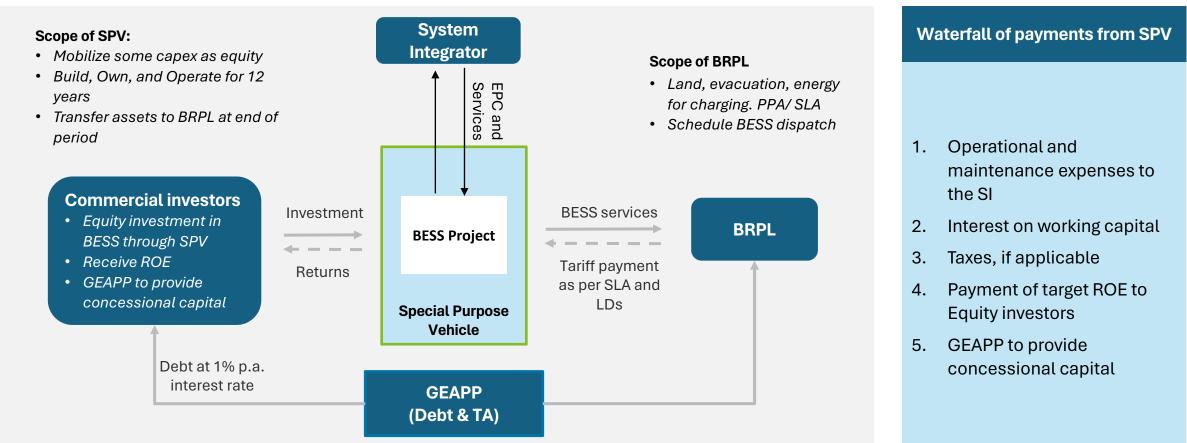
0

В

Summary

- BRPL sought to commission a grid-connected BESS project (20MW/40MWh) at their site to demonstrate the commercial and technical viability of BESS at the distribution-end by monetizing multiple BESS value streams
- The BESS system would be owned by a Special Purpose Vehicle (SPV), with O&M conducted by the system integrator for a period of 12 years
- The SPV would be financed by a mix of **concessional debt from GEAPP** and equity (to be provided by the project Sponsor).
- The SPV will be paid by BRPL through a **fixed tariff** (in Rs/MW/month terms). This tariff will be **approved by the DERC**

History


- The project was initially conceptualized by BRPL under USAID's Greening the Grid program grant in 2021 and presented to DERC for regulatory approval; however, the approval was put on hold due to limited regulatory provisions to monetize revenue streams.
- Following new market developments, GEAPP has re-engaged with BRPL, and have built upon the previous project to refresh the techno-commercial use-case to create a strong value proposition to secure regulatory approval for the pilot demonstration project.

		Key Parties
PARTY	ROLE	RESPONSIBILITY
BRPL	DISCOM, regulated entity, off- taker	 Land, evacuation, energy for charging. Offtaker of the BESS through a BESS agreement Schedule BESS dispatch
GEAPP	Concessional debt provider	 Invests 70% total project cost as concessional capital to SPV. Receives concessional interest (1% fixed rate) and principal repayments over the life of the project.
DERC	Regulatory body	• Approves the BESS project and proposed tariff.
Deloitte	Project Consultant	 Undertaking the Project Pre-feasibility study (energy modelling, financial modelling), preparation of Report for regulatory approval, preparation of Bid documents Project Management Support
IndiGrid & AmpereHour	Private sector developer / investor	 Invests 30% total project cost as equity in BESS through SPV. Provides EPC and O&M services Expected IRR of -3%

Based on the interest received from both System Integrators and Commercial Investors, it was decided that BESS would be held by an SPV, which will provide BESS as a service to BRPL

- The 20 MW / 40 MWh BESS will installed at a 33/11 kV grid substation within BRPL's license area.
- BRPL will pay a tariff (Capacity Charge) for the use of BESS as a Service
- The tariff will be discovered through a competitive bidding process. The winning bidder/ consortium will form an SPV, which will build, own and operate the BESS

Summary of Key Terms for GEAPP's Concessional debt investment

	KEY TERM	RATIONALE
	 The Project will be owned by an SPV which will provide services to BRPL 	 Using an SPV is a scalable approach for future projects
Legal structure	under the BESSA in return for a capacity-based tariff (INR/MW/year)	 Capacity charge supports private sector developers participating in bid as they are paid regardless of whether the BESS utilization
Size	 70% of total project cost 	 Sized based on typical project finance structures and to support competitive tariff from private sector developers
Instrument	 Concessional debt 	 GEAPP is seeking to optimize required concessionality and are providing a 1% concessional loan that would be repaid over the life of the project – to the extent additional concessionality was required,
Equity contribution	 The Sponsor will inject a minimum of 30% of total project cost 	 To ensure the private sector developer has "skin in the game"
Tenor	 Up to 13 years depending on when COD occurs. 12 years from COD. 	 Debt tenor matches the life of the BESSA with BRPL
Repayment profile	 Following a 2.5-year moratorium, equal repayments to be made on Repayment Date (quarterly). 	 Moratorium of repayments supports competitive tariff due to more ability to pay front-ended equity
Interest rate	 Following a 1.5-year moratorium, a fixed interest rate of 1% is due and payable on the Interest Payment Date (quarterly). 	 Moratorium of interest rate creates some buffer for private sector developer in case of delays etc.
Covenants	 Minimum 1.10x DSCR in 12-month historical and forward-looking period 	 Creates additional buffer for GEAPP in cashflow is expected to be less than anticipated
Debt service reserve account	 DSRA to be included in total project cost sized to cover debt service obligations (next ensuing principal repayment and interest payment) 	 Creates additional buffer for GEAPP in case of cashflow issues, for whatever reason
FX risk	 GEAPP will absorb the currency mismatch risk between INR revenue payments and USD-denominated debt service (interest and repayments), noting that the payments themselves will be in USD. 	 GEAPP is absorbing this risk to support competitive tariff
O&M and EPC costs	 O&M and EPC costs will be fixed. Any cost overruns on EPC shall be borne by the project Sponsor, not the Borrower (SPV) 	 To ensure relatively fixed cashflow profile and that the project developer takes cost risk for construction

SPV obligations to BRPL

	OBLIGATION OF SPV	SECURITY MECHANISMS
Project Commissioning Timeline	Developer to ensure that the project is commissioned within 10 months of signing of the BESSA	 Performance Bank Guarantee (PBG) equivalent to 5% project capex to be funded by project developer PBG to be encashed on per-day basis over 6 months from scheduled date of commissioning
Round-trip efficiency (RTE)	Minimum RTE at end of first year: 85% Minimum RTE at end of final year: 82%	 Deduction from monthly tariff payment/ PBG equivalent to excess energy consumption No tariff payment for RTE below 70%
Degradation pattern of BESS	Discharge capacity at end of first year: 40 MWh Discharge capacity at end of final year: 28 MWh	 Deduction from monthly tariff payment/ PBG proportional to shortfall in available capacity of BESS vs benchmark
Deviations from DISCOM's schedules	DISCOM must match the charge/ discharge schedules provided by the Buying DISCOM	 Deduction from monthly tariff payment/ PBG as per Deviation Settlement Mechanism Rules defined by DERC
Project Default/ Exit before expiry of BESSA	SPV to provide security in case of default in services or early exit from the BESSA	 Performance Bank Guarantee (PBG) equivalent to 5% of project capex may be invoked by the Buying DISCOM

BRPL's obligations to SPV

-	OBLIGATION OF BRPL	SECURITY MECHANISMS
Payment security mechanism	BRPL to ensure that all bills raised by the SPV are cleared within 60 days of submission of invoice	 Payment security to the SPV provided through Letter of credit and Payment Security Fund
Project Default/ Exit before expiry of BESSA	BRPL to provide security in case of default in services or early exit from the BESSA	 Ability for SPV to require BRPL to make whole all debt in event of default

Identifying Value Streams

С

A study of the Use Cases for BESS and Surrounding Regulatory enablers was undertaken to identify the value streams for this project

รเ	Use Case	Brief	Monetizable?	Monetization details	Future trends
1	Energy arbitrage and Ramping support	 BESS can help Discoms in avoiding peak purchase as it can be charged during non-peak hours and can be discharged during time of high demand when generation is less than demand BESS can also ramp up / down almost instantaneously to meet the ramping requirement in the system following sudden decrease or increase of generation 	Yes	Monetizable at market prices (DAM, HP DAM)	With increased renewable addition, it is expected that high RE periods would see lower prices. With sufficient RE penetration, select slots may also witness zero prices, as observed in other markets. Increased RE will also increase the steepness of the net peak curve, leading to higher market prices, increasing the scope of BESS for arbitrage / ramping
2	Ancillary services (TRAS, SRAS)	BESS can help in maintaining a reliable electricity flow in the grid by supplying power whenever required through Ancillary services market	Yes	SRAS is operational in administered mode. TRAS market expected to be operational by June 1 st Ancillary Regulations also specify that the entity participating should be connected to the Transmission network	Ancillary Services, especially frequency regulation (SRAS) is one of the largest revenue streams for BESS, globally. The same is expected to be true in India, especially with the increased addition of renewables
3	Distribution CAPEX deferral	BESS can be utilized as non-wire alternative for transmission and distribution network planning in place of traditional investment	Yes	Benefits to the system to be demonstrated as savings Capex deferral to be only to the extent of annual charges for transformer and hub costs	Potential upside in savings due to improved efficiency of distribution assets

A study of the Use Cases for BESS and Surrounding Regulatory enablers was undertaken to identify the value streams for this project

ร เ	Use Case	Brief Monet		Monetization details	Future trends
5	Resource Adequacy (future use case)	BESS can help Discoms to ensure that they are compliant to regulations by ensuring that there is an adequate supply of generation or demand responsive resources to serve expected peak demand reliably	No	Rules and Regulations not yet in place	Resource Adequacy Guidelines are published by MoP and IEGC also specifies Resource Adequacy. Rules and Regulations are expected to be published soon
6	Black Start and reactive power support	BESS can quickly provide support to restart parts of the grid in case of a blackout. The BESS inverter can vary its active and reactive power output to provide reactive power support. However, this reduces the power available for other use cases	No	No formal structure for black start and reactive power support. Black starts are also rare occurrences and reactive power support can reduce benefits from active power output	Not applicable
7	Carbon credits	BESS can support RE dispatchability, earning carbon credits	No	Carbon credits for BESS storage are not yet available	With the introduction of carbon markets, BESS is likely to earn another revenue stream, helping them to scale up

The benefits were estimated for value streams which are currently monetizable:

- 1. Energy arbitrage and Ramping support
- 2. Ancillary services (TRAS, SRAS)
- 3. Distribution CAPEX deferral

Benefits Estimation

Estimated basis future cash flows

D

- Deloitte's production cost simulation tool undertakes **Security Constrained Economic Dispatch (SCED)** using a Linear Programming framework
- The SCED engine decides the optimal dispatch from dispatchable resources such as coal, gas, BESS, market purchase / sale such that the system cost is minimum
- The optimization is subjected to several constraints to simulate power procurement of BRPL from various generators in the portfolio (both conventional and renewable), short-term and long-term contracts, power exchange participation etc.
- The optimization model is first **run without BESS to arrive at a system cost for each time block**. The system cost consists of cost of generation from thermal plants, renewables, market purchase/sale etc.
- Then the model is run with BESS and the difference between the system cost of each 15-minute time block is captured

Model Inputs	Model Working and Constraints	Model Outputs
 15 minute demand for FY22-23 Installed capacities, technical parameters of current generators such as MTL, ramp rates, variable costs etc Generation profiles for renewables and must resonant of the second struct o	 Ramp limits on now fast some generators can change their output Non-dispatchable nature of renewables Energy storage constraints 	 The Key Decision outputs from the model are: Optimal charge / discharge schedule Optimal dispatch of existing units Reduction in the system cost due to BESS
		1

- The simulations showed that 20 MW/ 40 MWh BESS would operate for 602 cycles in FY 23
- The average cost of charging would be Rs 3.77/kWh and for discharging Rs 7.99/kWh
- Since HP DAM is a nascent market segment, a benchmark-based calculation was used to evaluate the benefits.
- Among the 602 cycles used for Ramp Support and Energy Arbitrage, ~ 20% of days were assumed to be used in HP DAM at a benchmark price of Rs 13.14/kWh. These assumptions were calculated considering the HP DAM data till 12 Jun 2023
- The estimated savings in year
 1 is Rs 9.9 crore

Total arbitrage savings	Rs	9,90,18,624
Per unit cost for charging	Rs/kWh	3.77
Per unit cost for Ramp Support / arbitrage (DAM)	Rs/kWh	7.99
Per unit cost in HP DAM	Rs/kWh	13.14
Total Charge (Average RTE = 84.875%)	MWh	28016
Total Discharge for Ramp Support / arbitrage (DAM)	MWh	20935
Total Discharge in HP DAM	MWh	2844
No of cycles of Ramp Support / arbitrage (DAM)		530
No of days with HP DAM clearing (1 cycle/ day)		72
Total No of cycles		602

- Remaining cycles of BESS are used for Ancillary Services – **128 cycles** are assumed to be dispatched in TRAS (~ 0.35 cycles a day)
- MCPs in the TRAS market are expected to be linked with VC of costlier stations – BESS can bid with a certain margin, guaranteeing benefits. We have considered a margin of Rs1.5/kWh
- BESS would also receive a performance incentive of Rs 0.50/kWh.
- Participants also receive a commitment charge of up to Rs 0.20/kWh for the quantum which is cleared and not dispatched.
- With the entire quantum procured for TRAS not expected to dispatch, BESS can bid in the TRAS market when it is idle
- After factoring in time for Energy Arbitrage and cooling, we can consider around 14 hours a day where the BESS can bid in TRAS
- The total estimated savings in year 1 is Rs 4 crore

No of Days		365
Payment for dispatch		
Cycles dispatched		0.35
Dispatched Energy during LF period	MWh	39.5
Support the Grid by charging during HF period	MWh	46.53
Energy per cycle (TRAS Up + Down)	MWh	86
Total Energy Output	MWh	10,991
Bidding Margin	Rs/kWh	1.50
Performance Incentive	Rs/kWh	0.50
Benefits	Rs	2,19,82,972
Payment for commitment		
Total hours committed		14
Hours not cleared		12.60
Quantum not cleared	MW	20.00
Commitment Charge	Rs/kWh	0.20
Benefits	Rs	1,83,96,000
Total Benefits	Rs	4,03,82,972
Levelized Annual benefits (over 12 years)	Rs/MW/yr	20,40,775

- A thumb-rule of a 1-MW BESS being able to defer 1-MVA transformer is used
- BESS would essentially delay the investment required and hence the benefits are to the extent of carrying costs of that investment i.e., the debt service and return on equity.
- Considering the average peak loading of the Grid of 56%
- in FY23 and peak demand growth rate of 8% CAGR, capacity deferral benefits will be realizable at Kilokari substation from year 5

Parameter		Assumption
Transformer cost for 20 MVA	Rs	Rs 2,60,00,000
Debt: Equity	%	70:30
Debt	Rs	Rs 1,82,00,000
Loan term	Years	8
Interest Rate on debt	%	12% p.a.
Return on Equity	%	16% (post-tax)
Depreciation	%	5.83%
Levelized Annual benefits (over 12 years)	Rs/MW/yr	1,85,981

Current BESS costs exceed benefits; however, anticipated regulations for Ancillary Services, Carbon and Resource Adequacy will help eliminate this gap

(INR Lakh/MW/YEAR) 180 160 161 Future 140 Up-side **Estimated Current Costs @ Market rates Current Viability Gap** 100 80 80 88 60 65 Tariff Discovered after RFP (GEAPP concession of ~30%) 40 25 20 10 20 3 0 Carbon Revenue Total Benefit Stack **Energy Arbitrage** Ancillary Capacity Deferral Resource Adequacy

12 Year levelized Benefits provided by 2-hour BESS to the DISCOM

Current Scenario

Current BESS costs exceed benefits that can be monetized, as arbitrage is the key value stream; BESS is not allowed to participate in secondary & primary ancillary services market

Future Scenario

With upcoming regulations, we expect Secondary Reserve Ancillary Services (SRAS) and Resource Adequacy, which are major value streams for BESS globally, to play significant role in enhancing BESS benefits over the next 2-4 years in India

Anticipated Value Streams for Project commissioned in 2024 (to be tested for BRPL project)

Anticipated Value Streams for Project commissioned in 2026

Alternate Models of adding BESS

✓ Smarter, yet sub-optimal way of adding BESS

0

Ε

With few fresh investments expected in the thermal sector; RE integrated with balancing load (peaking power thermal, energy storage) is the key towards facilitating the DISCOMs to meet its 24x7 power supply obligations going forward

Round-the-Clock RE + non-RE

- These tenders are designed to supply Round-the-Clock firm power to DISCOMs reliably through Hybrid RE projects
- The projects can be bundled with non-RE sources, however, RE needs to be at least 51%
- MNRE also issued guidelines for the tariffbased competitive bidding process for RTC power projects
- SECI has phased out RTC (RE + non-RE) tenders since 2022 in favour of dispatchable RE tenders in recent months

Hybrid RE with mandated CUF

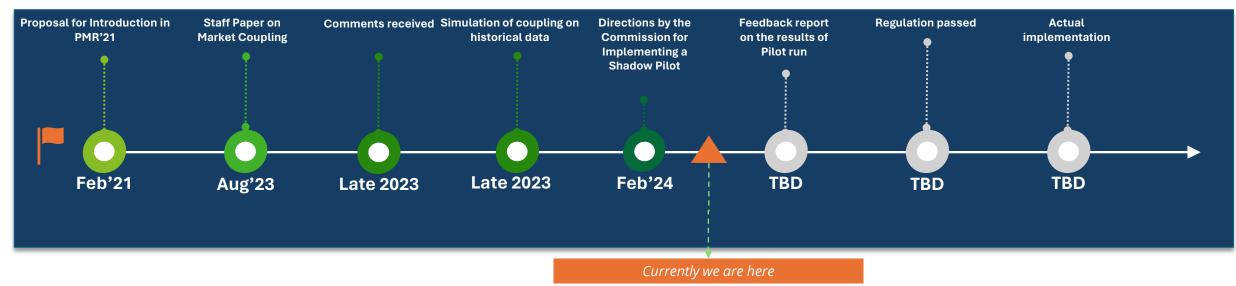
- These tenders are designed to meet the demand of DISCOMs through Hybrid RE projects
- SECI tenders have mandated that both wind and solar must constitute at least 33% capacity on MW basis
- Recent hybrid RE tenders have started specifying minimum ESS capacity or peak hours with high CUFs

Firm and Dispatchable RE (FDRE)

- These tenders are designed to meet the peak demand of DISCOMs while following the net load curve
- The tender specifies a load profile to be met through RE/ storage, with demand typically higher in non-solar hours
- The projects tend to have higher tariffs than hybrid RE projects due to the need for oversizing wind or adding ESS

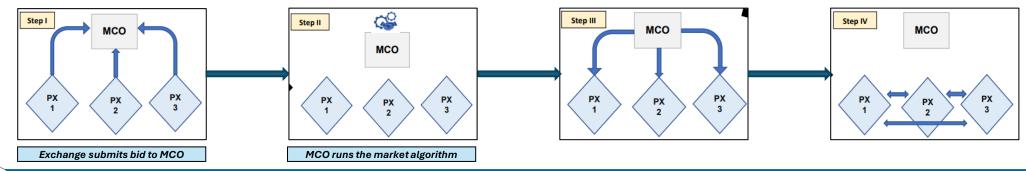
Sandboxing – Electricity Market Reforms ²

✓ Case Study: Market Coupling


0

Key Insights:

- Market Coupling matches bids from all Power Exchanges to find uniform MCP, considering bid types and market splitting and there by promoting competition
- Objective in India's context is to achieve discovery of a uniform MCP, optimal use of transmission infrastructure & maximization of economic surplus.
- Regard to recommendations of the expert committee and the provisions in PMR 2021, CERC issued a Staff (Discussion) Paper. 127 stakeholders submitted suggestions
- Commission conducted simulations using stakeholder feedback and Bid data to assess market coupling benefits.
- Ordinance for running shadow pilot is passed.


Market Coupling – Sandboxing

Possible flow of information

Benefits

Discovery of a uniform market clearing price

- A uniform market clearing price discovered by the market coupling process would become the single reference price for the market
- Deviation Settlement Mechanism (DSM) charges are currently indexed to the clearing price of DAM, a single price from market coupling would minimize the scope for any arbitrage between deviation settlement and market

Optimal use of transmission infrastructure

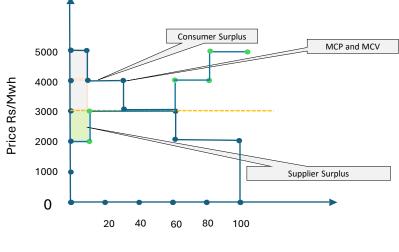
- The Commission had provided for the reservation of transmission corridors for the smaller power exchange (PXIL) however, it was noted that the reserved corridor remained underutilized.
- Under the coupled market scenario, the market coupling operator would merge the bids from all the power exchanges and no reservation on the transmission corridor would be required.
- Maximization of economic surplus
 - Market coupling would lead to the maximization of economic surplus
- Improvement of liquidity and prices
 - Sell & buy bids from all exchanges are merged, more volumes would be cleared
 - MCP may be discovered at lower end with merging of bids cal

ERRA Discussion Paper - Market Surplus with Coupling

Decoupled (Current system)

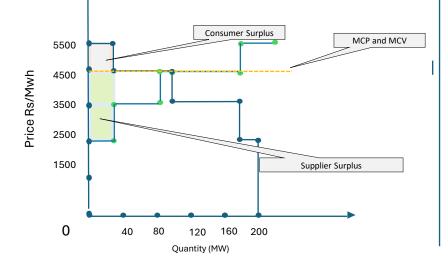
Independent price discovery IEX

Independent price discovery at PXIL

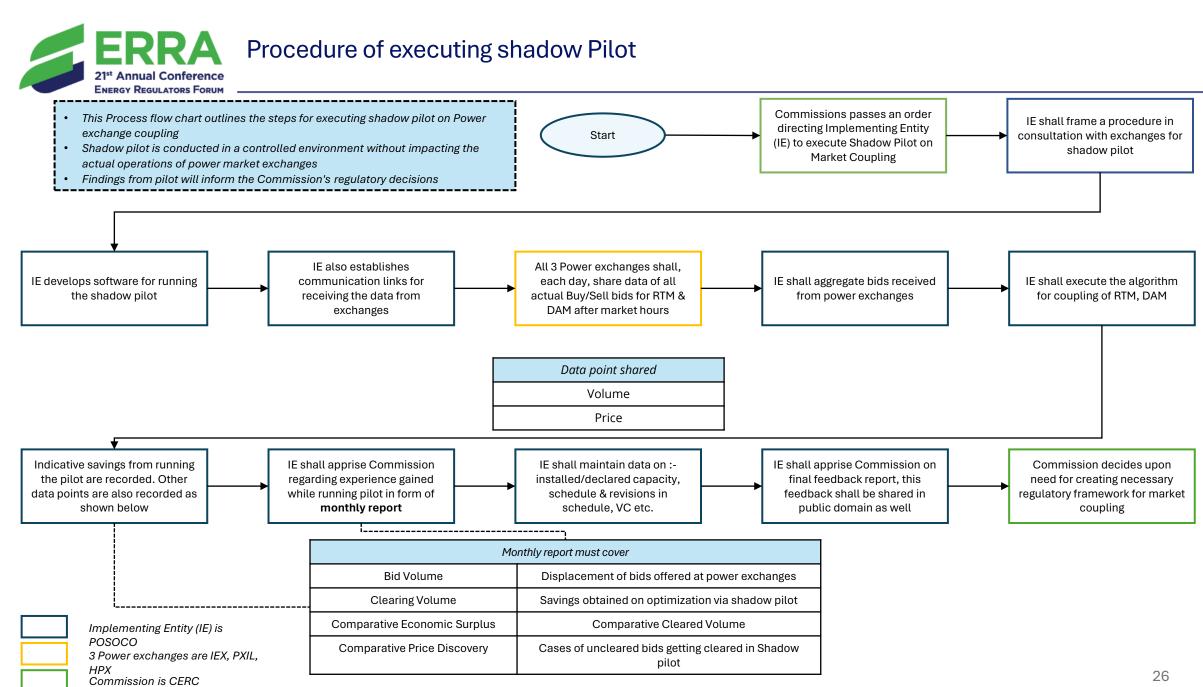

Buyers (B)	Price Rs/MwH	0-2000	2001- 3000	3001- 4000	4001- 5000	5001- 10000	в	Р	0-2500	2501- 3500	3501- 4500	4501- 5500	5501-6500
	Qty MW	100	60	30	10	0	D	Q	200	180	100	30	0
Sellers (S)	Price Rs/MwH	0-2000	2001- 3000	3001- 4000	4001- 5000	5001- 10000		Р	0-2500	2501- 3500	3501- 4500	4501- 5500	5501-6500
(3)	Qty MW	0	10	60	80	100	5	Q	0	30	90	180	200

	Li									
В	Р	0- 2000	2001- 2500	2501- 3000	3001- 3500	3501- 4000	4001- 4500	4501- 5000	5001- 5500	5500
	Q	300	260	240	210	130	110	40	30	0
s	Р	0- 2000	2001- 2500	2501- 3000	3001- 3500	3501- 4000	4001- 4500	4501- 5000	5001- 5500	
	Q	0	10	40	90	150	180	260	280	300

Coupled (Proposed system)


Shared price discovery for IEX and PXIL


MCP (Rs/Mw)	3001	
MCV (Mw)	30	
Buyer Surplus (Rs.)	19,990.0	(1999*10)
Seller Suplus (Rs.)	10,000.0	(1000*10)
Total Surplus (Rs.)	29,990.0	


MCP (Rs/Mw)	4500	
MCV (Mw)	90	
Buyer Surplus (Rs.)	30,000.0	(1000*30)
Seller Suplus (Rs.)	59,970.0	(1999*30)
Total Surplus (Rs.)	89,970.0	

	Quantity (MW)				
ļ	MCP (Rs/Mw)	3501			
ļ	MCV (Mw)	130			
	Buyer Surplus (Rs.)	1,45,000	(2000*30)+(1500*10)+(1000*70)		
	Seller Surplus (Rs.)	70,000	(1500*10)+(1000*30)+(500*50)		
	Total Surplus (Rs.)	2,15,000			

Quantity (MW)

Adaptive Regulation in Energy Transition

15 - 17 MAY 2024 | Bangkok, Thailand

Thank You

Organised By Hosted By

