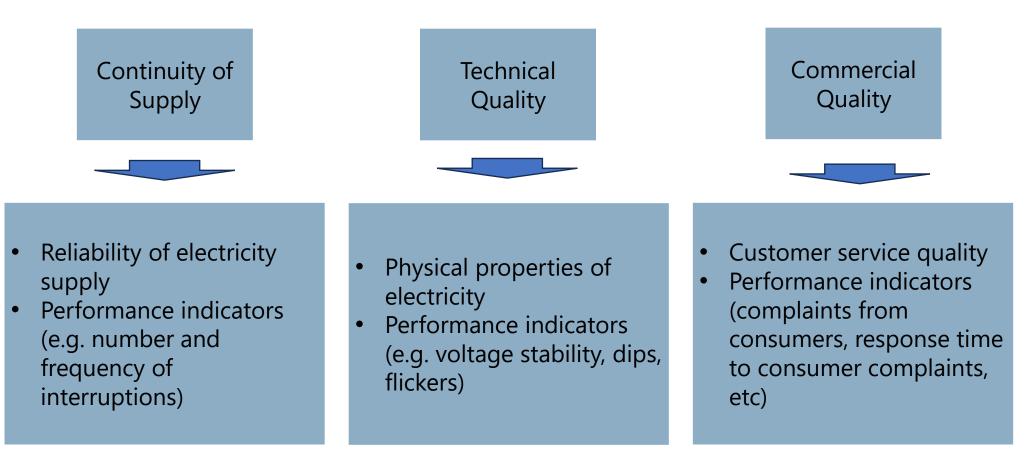


RES and Continuity of Supply

Presentation to the ERRA EMER Committee Dr. Konstantin Petrov, DNV

Table of Content



- Quality of Supply (QoS)
- RES Challenges
- Development of QoS
- Concluding Remarks

Dimensions of Quality of Supply

Quality of supply comprises three dimensions.

Continuity of Supply

Reliability Indicators (absolute) Number of Number of Unsupplied Duration customers interruptions (cumulative) energy affected Aggregated time Aggregated that customers Total number of Number of energy not who have times during a supplied to customers experienced an year that supply customers during affected for each outage have to one or more consecutive the year as a actually been outage in that result of the customers was interrupted in the interruptions (in interrupted year year (in minutes MWh) or hours)

Continuity of Supply

Reliability Indicators (normalized)

	System Average Interruption Frequency Index (SAIFI)	System Average Interruption Duration Index (SAIDI)	Customer Average Interruption Frequency Index (CAIFI)	Customer Average Interruption Duration Index (CAIDI)	Average Energy Not Supplied (AENS)	
	Average number of outages per customer	Average time of interruption per customer	Average number of interruptions for a customer who experienced at least one interruption	Average time required to restore service to an interrupted customer	Average amount of energy not supplied per customer because of interruptions	
,	$SAIFI = \frac{\sum_{i} N_{i}}{N_{t}}$		$CAIFI = \frac{\sum_{i} N_{i}}{N_{a}}$	$CAIDI = \frac{\sum_{i} r_i N_i}{\sum N_i}$	$AENS = \frac{\sum_{i} r_i P_i}{N_t}$	
	N_i : Number of interrupted customers for interruption i N_t : Total number of customers served R_i : Interrupted Rower for interruption i					

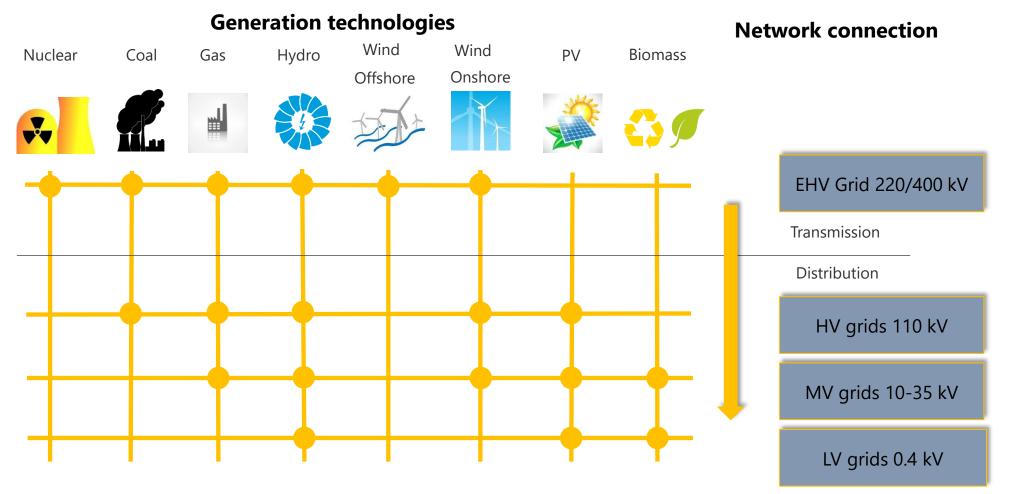
N_a: Number of customers affected by at least one outage

P_i: Interrupted Power for interruption i

RES Production in Europe

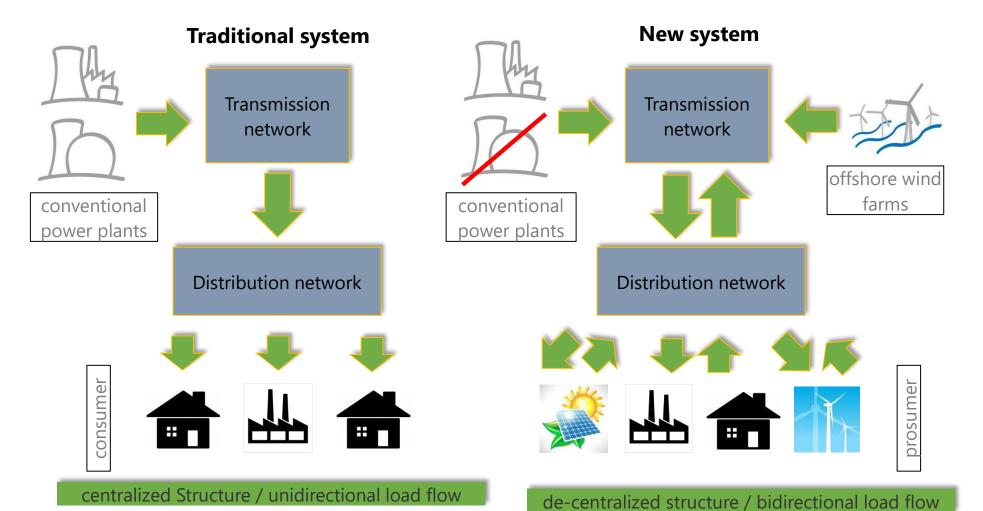
2013

The RES production in the European Union has significantly increased in the last decade.


2022

Source: Eurostat

RES Connection

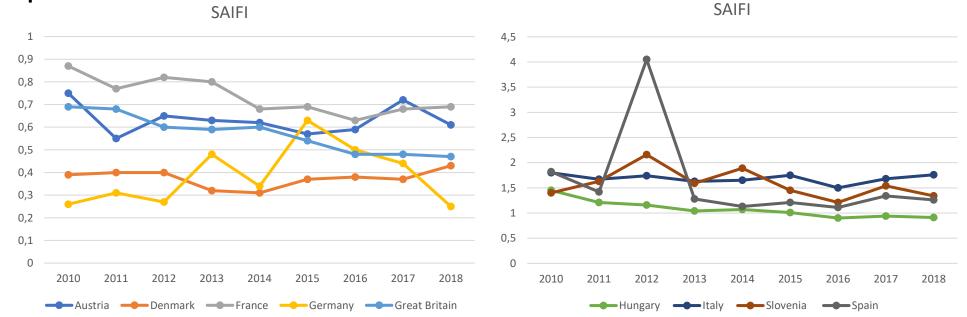

Connection of RES generation to electricity networks

System Impact

The rapid growth of RES leads to changes in electricity flows.

System Impact

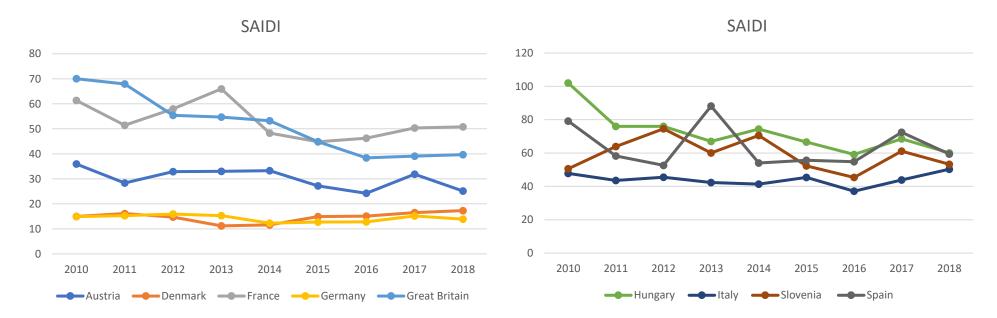
Increasing penetration of variable RES leads to a wide range of technical challenges for the power system.


	System Adequacy	System Security /Operation
Challenges	 Geographical dispersion of RES Declining capacity factors Firm generation capacity requirements Reversed flows / thermal overload / network capacity insufficiency 	 Intermittency / forecast errors Operating reserves / flexibility (frequency control and balancing) Voltage instability

Risk of power system outages and deterioration of quality of supply

Continuity of Supply in Europe

The published SAIFI Index remains reasonably stable / slightly improves.



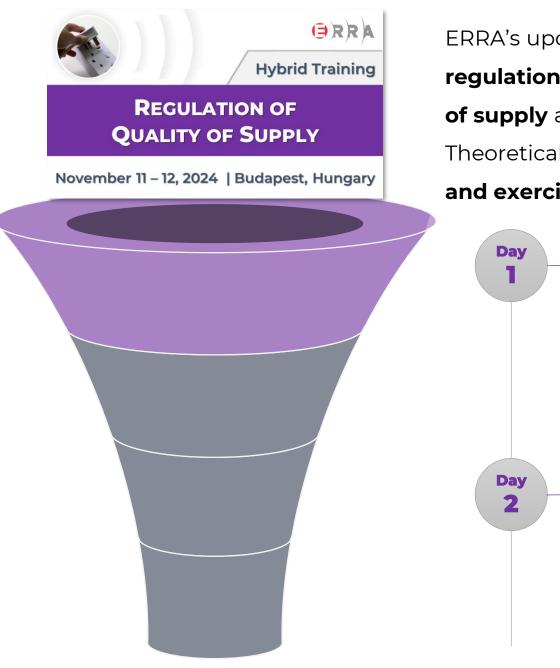
SAIFI (excluding exceptional events) Source: CEER

Continuity of Supply in Europe

The published SAIDI Index remains reasonably stable / slightly improves.

SAIDI (excluding exceptional events) Source: CEER

Mitigation Measures


Network operates have been able to mobilize various effective measures to enable RES integration and maintain quality of supply.

	System Adequacy	System Security /Operation
Solutions	 Improved coordination in planning of RES Back-up generation capacity Network extension Connection policy 	 Improved RES forecasting Dimensioning of operating reserves Voltage management concepts Procurement of flexibility Smart grids

Concluding Remarks

- RES production has been steadily increasing
- Increasing penetration of variable RES leads to a wide range of technical challenges for the power system
- The observed SAIDI and SAIFI remain reasonably stable / slightly improves
- Network operates have been able to mobilize various effective measures to enable RES integration and maintain quality of supply
- Regulators play an important role in this process

ERRA's upcoming training course explores the **principles underlying** regulation of quality of supply including the dimensions of quality of supply as well as regulatory fundamentals and methods. Theoretical presentations will be extended with country case studies and exercises providing relevant example from regulatory practice.

- More than two decades of quality of supply regulation: where we came from and where we go?
- Dimensions of quality of supply
- Methods to regulate quality of supply
- Performance standards
- The case study of Italy
- Financial incentive schemes
- Reliability and outage cost
- Experiences with quality of supply regulation
- The case study of Lithuania
- Final test

<u>https://erranet.org/regulation-of-quality-of-supply/</u>

CONFIRMED SPEAKERS

Hybrid Training

REGULATION OF QUALITY OF SUPPLY

November 11 – 12, 2024 | Budapest, Hungary

Konstantin PETROV

Course Director Managing Consultant, Energy Markets and Regulation DNV Energy Systems, Germany

Luca LO SCHIAVO

Director, System Services and Energy Monitoring Directorate Italian Regulatory Authority for Energy, Networks and Environment (ARERA)

<u>https://erranet.org/regulation-of-quality-of-supply/</u>

DNV

THANK YOU FOR YOUR ATTENTION!

Konstantin Petrov konstantin.petrov@dnv.com

https://erranet.org/