

Cybersecurity of Critical Energy Infrastructure – Two Case Studies Hisham Choueiki, Ph.D., P.E. NARUC

The goal of security is to manage risk by reducing the impact and/or likelihood of harm to an organization's asset committed by a malign actor targeting the asset's vulnerability.

INFORMATION SECURITY AND CYBERSECURITY

- Information security is the protection of information.
 - Documents, text, video, audio
 - Analog information (printed documents, books, reports, information displayed on monitors, spoken by people, ...)

- <u>Cybersecurity</u> is the protection of cyber.
 - Computer networks
 - Data storage
 - Software
 - Digital information at rest and in transit

A VULNERABILITY/THREAT ASSESSMENT

- Assets can be vulnerable.
 - Asset vulnerabilities are independent of threats.
 - Asset vulnerability exposures can change over time.
- Threats can exploit vulnerabilities.
 - o Threats are independent of vulnerabilities.
 - Threats require capabilities and knowledge to exploit vulnerabilities.
 - Threats exploit vulnerabilities through attack scenarios.
 - Threats can be used to assist with the identification of vulnerabilities (e.g., white hat hacking).

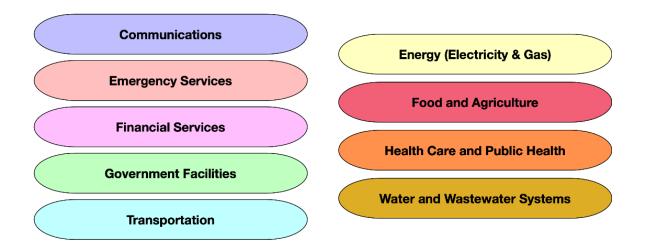
VULNERABILITY TREATMENT OPTIONS (TTTT)

- Treat
 - Protection measures Defend the asset risk/vulnerability from attack.
 - Resilience strategy Establish a resilience response ahead of time to respond to an attack.
- Transfer
 - Give the responsibility for managing the asset risk/vulnerability to another party.
 - Purchase insurance, subcontract the responsibility, sell the asset and establish a service contract, etc.
- Terminate
 - Dispose of the asset with the vulnerability (destroy, sell, retire, etc.).
- Tolerate
 - Do nothing Leave the asset vulnerability exposed and deal with the fallout if an attack does occur.

A REGULATOR'S FINANCIAL CONSIDERATIONS

- Information security and cybersecurity cost money.
- Protection measures and building resilience cost money.
- There is not enough money to go around.
- A risk-based approach to information and cybersecurity can reduce costs.
- Therefore, the *prioritization of the assets and their associated risks achieve this goal.*

A REGULATOR'S FINANCIAL CONSIDERATIONS (cont.)


- Appropriateness of selected option
 - Treat, transfer, terminate, tolerate
- Effectiveness of the protection measure
 - Once implemented, did the protection measure achieve or exceed the residual risk?
 - Over time, does the protection measure continue to achieve or exceed the residual risk?
- Effectiveness of the cyber investment
 - Was the cost of the cyber investment warranted?
 - Did the cyber investment provide an acceptable return on investment?
 - Was the additional investment required to sustain the effectiveness of the protection measure?

DEFINITION OF CRITICAL NATIONAL INFRASTRUCTURE (CNI)

A paraphrase of the NIST definition of CNI is:

"Systems and assets, whether physical or virtual, so vital to the country that the incapacity or destruction of such systems and assets would have a debilitating impact on cybersecurity, national economic security, national public health or safety, or any combination of those matters."

•

- <u>Critical load</u> is the electrical load upon which an organization relies to <u>keep its key operations</u> <u>running</u>. As a corollary to critical load is non-critical load, which is electrical load that is <u>not</u> <u>important to keep on</u>. Once critical loads have been identified, they need to be prioritized by their importance and how long they need to be kept running when the security of supply has been compromised.
- <u>Critical energy infrastructure information</u> is the important network infrastructure, information systems, and technological systems in the energy industry. These are the systems whereby their destruction, harm, or loss of functionality may result in a severe impact on national security, the national economy and people's livelihood and health, or the public interest.

- 1. What is critical infrastructure?
- 2. Does critical infrastructure include the power grid?
- 3. Is the entirety of the power grid considered critical infrastructure?
- 4. What should be considered critical infrastructure?
- 5. Should the critical infrastructure asset list be public domain?
- 6. Does the government or NRA have any protective marking policies?
- 7. Does the government or NRA have any policy regarding the handling of protected information
- 8. Other...

HOW DOES CRITICAL INFRASTRUCTURE RELATE TO CYBERSECURITY?

- Digital automation has created a dependency with critical infrastructure.
- IT systems are a conduit to disrupting critical infrastructure.
- IT is not the critical infrastructure; rather, it supports the critical infrastructure.
- Most IT systems serving critical infrastructure were designed and implemented without consideration to cybersecurity this brings about more vulnerability.

- Risk is the probability that a vulnerability will be exploited such that it results in harm. It is the
 potential for loss, damage, or destruction of an asset as a result of a threat exploiting a
 vulnerability.
- Risk is the product of likelihood and impact.
- Risk management is the identification and reduction of risks to manageable levels.

- Implementation of an ISMS (like an ISO 27001)
- Operations costs for running the implemented ISMS
- Mitigation for implementing controls to protect against an attack incident
- Training is not a one-time activity; it needs continuous reinforcement.
- Communications with staff regularly to reinforce knowledge and understanding of cybersecurity
- Internal audits performed at least annually (ideally twice annually or even quarterly)
- Certification audits performed to achieve formal certification

THE CASE OF ALBANIA ASSESSMENT OF UTILITY PREPAREDNESS

- The purpose of law no. 2/2017 is to achieve a high level of cybersecurity by defining security measures, rights, obligations and mutual cooperation between the entities operating in the field of cybersecurity.
- Achieving this requires the implementation of <u>organizational</u> and <u>technical</u> security measures.
- Organizations are required to implement measures needed to prevent and minimize the impact of risks and cybersecurity incidents.
- The law lists 20 security objectives, divided into technical and organizational measures, based on international standards used by electronic communications sector providers in the European Union.

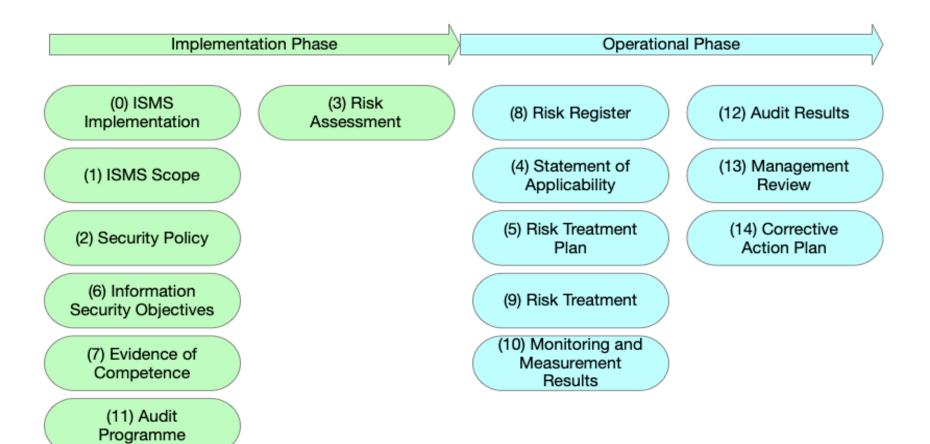
• ERE issued the cyber regulation order on July 30, 2020.

ORGANIZATIONAL MEASURES

					Meas	sures		Docume	entation
	ORGANZATIONAL MEASU	RES			Level 1	Level 2		Level 1	Level 2
1	a) Information Security M	anagement			4	2		5	9
2	b) Risk Management				6	1		7	1
3	c) Security Policies				4	1		10	2
4	ç) Organizational Security	Y			4	1		11	2
5	d) Security Requirements	for Third Par	ties		4	2		8	2
6	dh) Asset Management				2	1		9	2
7	e) Security of human reso	urces and acc	cess of people	è.	3	1		17	1
8	ë) Security events and ma	anagement of	f cyber securi	ty incidents	3	2		6	2
9	f) Management of work of	continuity			3	5		7	4
10	g) Control and audit				4	1		7	1
				Sub Totals	37	17	Sub Totals	87	26
				Levels 1+2	54		Docs 1+2	113	

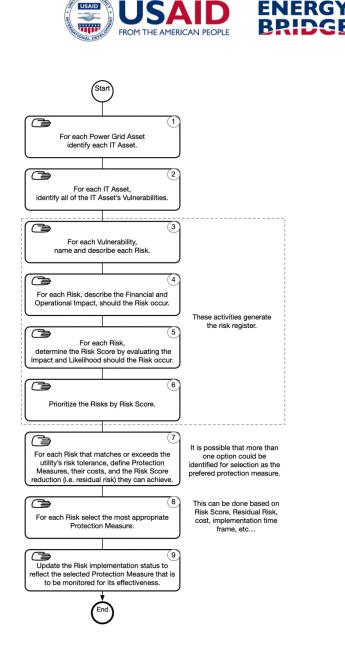
TECHNICAL MEASURES

								-	
					Meas	sures		Docume	entation
	TECHNICAL MEASURES				Level 1	Level 2		Level 1	Level 2
1	a) Physical security				3	2		3	2
2	b) Protecting the integrity	of communio	cation networ	'ks	4	2		6	2
3	c) Verifying user identity				3	1		3	1
4	ç) Access authorization m	anagement			3	1		5	1
5	5 e) The activity of administrators and users			4	1		3	1	
6	dh) Discovering cyber sec	curity events			3	1		2	2
7	e) Tools for tracking and	evaluating cy	ber security e	events	1	1		1	1
8	ë) Applications Security				1	1		1	1
9	f) Of cryptographic device	es			2	1		5	2
10	10 g) Security of industrial systems			0	2		0	14	
				Sub Totals	24	13	Sub Totals	29	27
				Levels 1+2	37		Docs 1+2	56	


ISO 27001 ALLIGNMENT WITH LAW No 2/2017

- All 91 of the Law No. 2/2017 security objective measures were mapped by NARUC to the 60 ISO27001 requirements.
- By documenting this mapping, compliance to the Law No. 2/2017 security objective measures can be demonstrated to the ERE through the twice annual ISO27001 internal audits and by an ISO27001 certification.
 - Compliance to the Law No. 2/2017 security objective measures is proven through induction (i.e. via the mapping process).
 - By virtue that an ISO27001 requirement is found compliant, it implies that each mapped Law No. 2/2017 security objective measures is also compliant.

MANDATORY DOCUMENTS FOR ISO 27001 IMPLEMENTATION



THE CASE OF GEORGIA REASONABLENESS OF CYBERSECURITY INVESTMENTS

SAMPLE RISK ASSESSMENT PROCESS

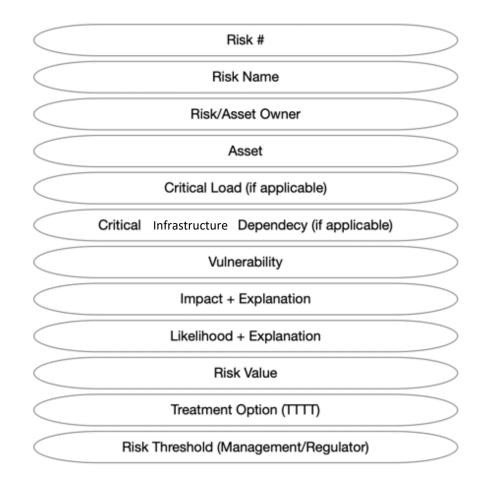
- It takes a power grid-centric view of assets.
- Critical power grid assets are reviewed for their dependencies on IT/OT assets.
- These become the IT/OT assets that need cybersecurity protection.
- Financial considerations are always at the forefront of risk assessments.
 - o Handle risk via preemptive protection measures
 - Handle risk through resilience
- Once a protection measure has been implemented, it must be monitored for its effectiveness.
 - Poor performance warrants changing the protection measure or the treatment.
 - Outstanding performance warrants reducing the protection measure performance to reduce cost.

National

ssociation of

RISK REGISTER DATA SUBMITTED TO GNERC

Date	Risk Score (1-5)	Protection Measure	Applicable IT Asset
Risk ID	Impact (1-5)	Protection Measure Cost	Applicable Power Grid Asset
Risk Name	Likelihood (1-5)	Reduced Risk Score (1-5)	Power Grid Vulnerability
Risk Description	Financial Impact	Implementation Status	Critical Infrastructure Asset
Vulnerability	Operational Impact	Implementation Date	Critical Infrastructure Vulnerability


Typically shown as a list, beginning with the highest risk score and working to the lowest.

ISO27001 RISK REGISTER

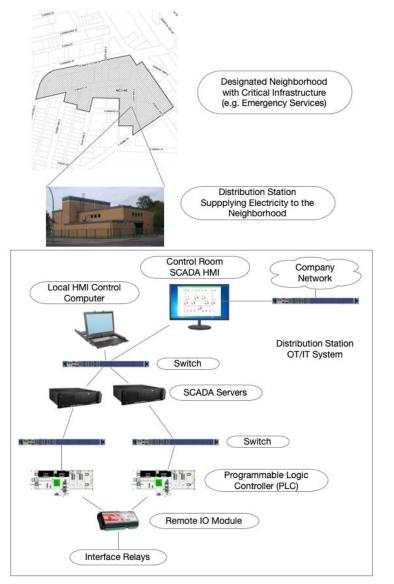
Identifies all risks and prioritizes them based on risk value (See Annex for example)

	Catastrophic	5	5	10	15	20	25	
_	Significant	4	4	8	12	16	20	
Impact	Moderate	3	3	6	9	12	15	
#	low	2	2	4	6	8	10	
	Negligable	1	1	2	з	4	5	
			1	2	3	4	5	
			Improbable	Remote	Occasional	Probable	Frequent	
	Likelihood							

THANK YOU FOR YOUR ATTENTION!

Hisham Choueiki, Ph.D., P.E.

hchoueiki@naruc.org


ANNEX RISK REGISTER EXAMPLE

Identify all the high-risk power grid assets. For this example, it will be a neighborhood distribution station because it is supplying electricity to an emergency services facility.

Step I						
OT/IT Assets						
Control Room SCADA HMI						
Local HMI Control Computer						
Company Network Switch						
Switch I						
SCADA Server I						
SCADA Server 2						
Switch 2						
Switch 3						
PLC I						
PLC 2						
Remote IO Module						

For each power grid asset, identify each IT asset.

Step 2	Step 2					
OT/IT Assets	Vulnerability					
Control Room SCADA HMI	Old Operating System					
	Old SCADA					
	Old Hardware					
	Accessible from company network					
Local HMI Control Computer	Old Operating System					
	Old SCADA					
	Old Hardware					
Company Network Switch	None					
Switch I	None					
SCADA Server I	Old Operating System					
	Old SCADA					
SCADA Server 2	Old Operating System					
	Old SCADA					
Switch 2	None					
Switch 3	None					
PLC I	None					
PLC 2	None					
Remote IO Module	None					

For each IT asset, identify all the IT asset's vulnerabilities.

	Step 3	
OT/IT Assets	Vulnerability	Risk
Control Room SCADA HMI	Old Operating System	Stolen data
	Old SCADA	Take over control
	Old Hardware	Shutdown electricity Failure
		Loss of control
	Accessible from company network	Take over SCADA
		Loss of control Shutdown electricity
Local HMI Control Computer	Old Operating System	Stolen data
	Old SCADA	Take over control Shutdown electricity
	Old Hardware	Failure
		Loss of control
Company Network Switch	None	Take over SCADA
		Loss of control
		Shutdown electricity
Switch I	None	None
SCADA Server I	Old Operating System	Stolen data
	Old SCADA	Take over control
		Shutdown electricity
SCADA Server 2	Old Operating System	Stolen data
	Old SCADA	Take over control
		Shutdown electricity
witch 2	None	None
Switch 3	None	None
PLC I	None	None
PLC 2	None	None
Remote IO Module	None	None

For each vulnerability, name and describe each risk.

	Step	4		
OT/IT Assets	Vulnerability	Risk	Financial	Operational
Control Room SCADA HMI	Old Operating System	Stolen data	Low	Low
	Old SCADA	Take over control Shutdown electricity	High	High
	Old Hardware	Failure Loss of control	Moderate	High
	Accessible from company network	Take over SCADA Loss of control Shutdown electricity	High	High
Local HMI Control Computer	Old Operating System	Stolen data	Low	Low
	Old SCADA	Take over control Shutdown electricity	High	High
	Old Hardware	Failure Loss of control	Moderate	High
Company Network Switch	None	None	None	None
Switch I	None	None	None	None
SCADA Server I	Old Operating System	Stolen data	Low	Low
	Old SCADA	Take over control Shutdown electricity	High	High
SCADA Server 2	Old Operating System	Stolen data	Low	Low
	Old SCADA	Take over control Shutdown electricity	High	High
Switch 2	None	None	None	None
Switch 3	None	None	None	None
PLC I	None	None	None	None
PLC 2	None	None	None	None
Remote IO Module	None	None	None	None

For each risk, describe the financial and operational impact should the risk occur.

For each risk, determine the risk score by evaluating the impact and likelihood should the risk occur.

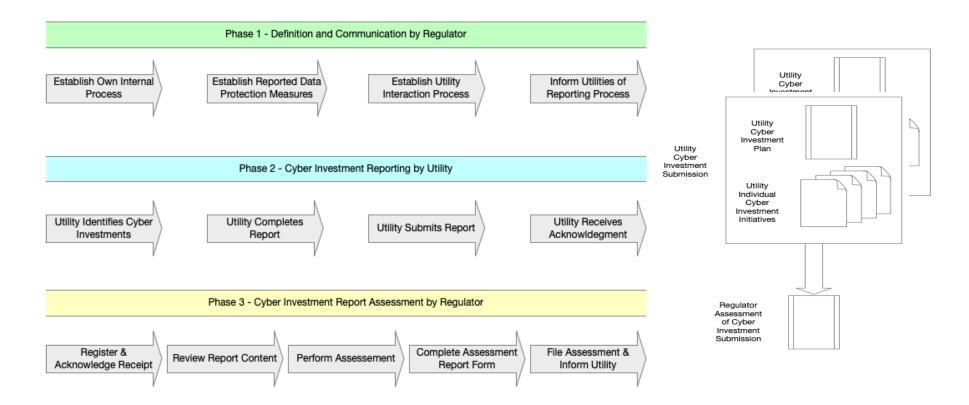
	Ste	o 5			
OT/IT Assets	Vulnerability	Risk	Impact	Likelihood	Score
Control Room SCADA HMI	Old Operating System	Stolen data	1	4	4
	Old SCADA	Take over control Shutdown electricity	5	4	20
	Old Hardware	Failure Loss of control	4	3	12
	Accessible from company network	Take over SCADA Loss of control Shutdown electricity	5	3	15
Local HMI Control	Old Operating System	Stolen data	1	4	4
Computer	Old SCADA	Take over control Shutdown electricity	5	4	20
	Old Hardware	Failure Loss of control	4	3	12
Company Network Switch	None	None	1	1	1
Switch I	None	None	1	1	1
SCADA Server 1	Old Operating System	Stolen data	1	4	4
	Old SCADA	Take over control Shutdown electricity	5	4	20
SCADA Server 2	Old Operating System	Stolen data		4	4
	Old SCADA	Take over control Shutdown electricity	5	4	20
Switch 2	None	None	I	1	I
Switch 3	None	None	I	1	I
PLC I	None	None	1	1	1
PLC 2	None	None	1	I	I
Remote IO Module	None	None	1	1	1

		Step 6		
Priority	OT/IT Assets	Vulnerability	Risk	Score
I	Control Room SCADA HMI	Old SCADA	Take over control Shutdown electricity	20
I	Local HMI Control Computer	Old SCADA	Take over control Shutdown electricity	20
I	SCADA Server I	Old SCADA	Take over control Shutdown electricity	20
I	SCADA Server 2	Old SCADA	Take over control Shutdown electricity	20
2	Control Room SCADA HMI	Accessible from company network	Take over SCADA Loss of control Shutdown electricity	15
3	Control Room SCADA HMI	Old Hardware	Failure Loss of control	12
3	Local HMI Control Computer	Old Hardware	Failure Loss of control	12
4	Control Room SCADA HMI	Old Operating System	Stolen data	4
4	Local HMI Control Computer	Old Operating System	Stolen data	4
4	SCADA Server I	Old Operating System	Stolen data	4
4	SCADA Server 2	Old Operating System	Stolen data	4
5	Company Network Switch	None	None	I
5	Switch I	None	None	I
5	Switch 2	None	None	I
5	Switch 3	None	None	I
5	PLC I	None	None	I
5	PLC 2	None	None	I
5	Remote IO Module	None	None	I

Prioritize the risks by risk score.

For each risk that matches or exceeds the utility's risk tolerance, define protection measures, their costs, and the risk score reduction (i.e., residual risk) they can achieve.

	Step 7								
Priority	OT/IT Assets	Vulnerability	Risk	Score	Protection				
Ι	Control Room	Old SCADA	Take over control	20	Upgrade SCADA				
	SCADA HMI		Shutdown electricity		New SCADA				
I	Local HMI Control	Old SCADA	Take over control	20	Upgrade SCADA				
	Computer		Shutdown electricity		New SCADA				
I	SCADA Server I	Old SCADA	Take over control	20	Upgrade SCADA				
			Shutdown electricity		New SCADA				
I	SCADA Server 2	Old SCADA	Take over control	20	Upgrade SCADA				
			Shutdown electricity		New SCADA				
2	Control Room	Accessible from	Take over SCADA	15	Install Firewall				
	SCADA HMI	company	Loss of control						
		network	Shutdown electricity						
3	Control Room	Old Hardware	Failure	12	Replace Computer				
	SCADA HMI		Loss of control						
3	Local HMI Control	Old Hardware	Failure	12	Replace Computer				
	Computer		Loss of control						



Once the protection measure is selected, it must be monitored to ensure that it is performing as expected, thus implying that the investment was appropriate.

	Step 8								
Priority	OT/IT Assets	Vulnerability	Risk	Score	Protection				
I	Control Room SCADA HMI	Old SCADA	Take over control Shutdown electricity	20	Upgrade SCADA				
I	Local HMI Control Computer	Old SCADA	Take over control Shutdown electricity	20	Upgrade SCADA				
I	SCADA Server I	Old SCADA	Take over control Shutdown electricity	20	New SCADA				
I	SCADA Server 2	Old SCADA	Take over control Shutdown electricity	20	New SCADA				
2	Control Room SCADA HMI	Accessible from company network	Take over SCADA Loss of control Shutdown electricity	15	Install Firewall				
3	Control Room SCADA HMI	Old Hardware	Failure Loss of control	12	Replace Computer				
3	Local HMI Control Computer	Old Hardware	Failure Loss of control	12	Replace Computer				

Three-phased approach for investment effectiveness assessment by GNERC

