

TOTEX REGULATION AND EFFICIENCY ANALYSIS

Ardian Berisha Managing Partner, Optima Energy Consulting

7 May 2025

OPTIMA ENERGY CONSULTING

Established in 2013

100% employee-owned

60+ projects in 20+ countries

- Economic Regulation, Price Controls
- Renewable Energy Policy
- Legal and Policy Support
- Capital expenditure review and assessment
- District heating, energy efficiency and energy audits

CLASSICAL MODEL – BUILDING BLOCKS

Opex

Maximum Allowed Revenues (MAR)

3

CHALLENGES WITH THE BUILDING-BLOCK MODEL

Capex-bias

- **Profit incentive** Allowed return increased by increasing spending in capex
- **Efficiency incentive** X-factors typically applied on Opex, which is more scrutinized than Capex – efficiency gains can be improved by increasing capex even if customers are worse off overall
- **Regulatory review incentive** Regulators tend to be more accepting of capex increases vs. opex as these are seen as contributing to technical requirements/security of supply
- **Operational incentive** utilities would rather invest on long-term capex that they own rather than engage in short-term opex contracts which require admin to monitor and implement
- **QOS incentive** Quality of service indicators (SAIDI/SAIFI/ENS) affecting Allowed Revenues encourage capex investment

| 4 |

ALTERNATIVE MODEL – TOTEX

5

KEY FEATURES OF THE TOTEX MODEL

TOTEX model

- Capital and operational expenses ulletare lumped into a total expenditure box (Totex)
- A capitalization rate is set to • determine
 - Slow money money that is recovered over a period of time, in a similar manner as capex would; and
 - Fast money money that would be recovered within a year of the regulatory period to cover operational expenses
- Addresses capex bias incentive ullet

KEY FEATURES OF THE TOTEX MODEL

Setting the capitalization rate

- Capitalization rates affect ulletproportion of the costs added to the 'slow money' with the remainder recovered in the year it is incurred
- Important impact on financeability lacksquare
- Set based on regulatory ulletassessment of an efficient structure
- Case study UK: Ofgem (RIIO-1) •
 - Regulators Average rates estimated by companies over 8 years
 - Levels used in previous determinations
 - Financial solvency of the utilities
 - Ofgem precedents: 74% 90%

ALLOWED REVENUE COMPONENTS: DEPCT

Depreciation

- Ratio of previously existing RAB + ulletcapex additions to the weighted average asset life
- Straight line depreciation by ulletdefault
- Front-loaded depreciation as an ulletexemption to enhance liquidity and enable loan financing for tenures shorter than asset life (technical life)

ALLOWED REVENUE COMPONENTS: ALLOWED RETURN

Allowed Return

- Product of average value of nonulletdepreciated Slow Money x WACC
- Assets assumed to be added \bullet middle of the year (half return + depreciation allowed in any given year)
- Calculated similarly to the buildingulletblock approach for the 'slow money' portion of TOTEX

ALLOWED REVENUE COMPONENTS: ALLOWED RETURN

Weighted Average Cost of Capital

- WACC represents the percentage return ulletthat debt and equity holders require for the risk they assume by investing in regulated infrastructure
- WACC = $g \times r_d + (1-g) \times r_e$ ullet
- Return on equity estimated according \bullet to CAPM:

Re=(rf+B*ERP)/(1-t)

- Case studies: lacksquare
- BnetzA: Sets Rd based on actual debt rates
- Ofgem: Updates Rf rates annually for ulletWACC setting

EFFICIENCY ANALYSIS

Price/revenue cap – opex

- X-efficiency factor set based on top-down or bottom-up approaches
- Top-down, efficiency set based on:
 - Inefficiency of an individual utility relative to comparable sample; and
 - Frontier-shift effect
 - Estimated by Ofgem under RIIO-2 to be 1.5%

ERRA TSO&DSO STUDY RESULTS (2/2)

Country	TSO	DSO	
Albania	0%*	0%*	
Austria		0%*	
Kosovo	1.5%	1.5%	
Moldova	1%	1%	
Oman	2%	2%	
Pakistan		0% - 5.8%**	
Slovakia	3.5%	3.5%	
Turkey		0% - 2.34%**	

TSOs

DSOs

BENCHMARKING METHODS

| 13 |

BENCHMARKING METHODS

| 14 |

UNI-DIMENSIONAL RATIOS (1/2)

outputs

Uni-dimensional ratios

- Use of trend or ratio analysis on a businesses inputs or outputs to make simple comparisons about productivity and efficiency (identify some immediate outliers for instance)
- Carried out by calculating different measures of financial, operational or quality of service performance of different businesses
- Examples can include: Opex per km vs customer density, opex per customer vs. customer density, opex vs. distributed energy, opex vs. number of users
- Applied on Cross Sectional, Time Series or Panel data

UNI-DIMENSIONAL RATIOS (2/2)

Uni-dimensional ratios

- Pros: •
 - Simple, easy to calculate, accessible data requirement
- Cons: •
 - Can give misleading information about utility performance (for instance a labor productivity measure can overstate results if company is deepening capex
- Widely used among the industry, regulators and practitioners
- CER (Ireland) •
 - Tree-cutting costs per network kilometer and lacksquaretree coverage per km
 - Fault costs per network km ullet
- ERO (Kosovo) •
 - Employee numbers per network length (km) • (2012)
 - Cost of 110 kV OH line per km \bullet

COMPARABLE DATA IS KEY (1/2)

1.9%pa

Gap from most efficient Discco * Share of inefficiency removed

50.0%

<u>Relative</u>	<u>Catch-up</u>
<u>efficiency</u>	<u>efficiency</u>
62.2%	-18.9%
100.0%	0.0%
25.0%	-37.5%
38.4%	-30.8%
70.9%	-14.5%
40.2%	-29.9%
35.9%	-32.0%
32.4%	-33.8%
37.3%	-31.3%
50.3%	-24.9%

17 |

COMPARABLE DATA IS KEY (2/2)

Number of customer per km of network

customer / km	2.6
customer / km	1.2
customer / km	33.2
customer / km	15.2
customer / km	13.3
customer / km	11.2
customer / km	16.8
customer / km	29.3
customer / km	17.9
customer / km	29.0
customer / km	16.7

BENCHMARKING METHODS

| 19 |

DATA ENVELOPMENT ANALYSIS (DEA) (1/2)

Data Envelopment Analysis (DEA)

- DEA compares the efficiency of firms producing similar outputs using similar inputs
- (i.e. Observations from the input-output combinations from actual data give information about the set of possible input-output combinations that are available to the industry.)
- After constructing a feasible 'input-output' combination, a DEA score for a particular business is assigned based on the level according to which the set of input parameters can be reduced while keeping the same level of output (input-oriented model)

Output y per unit of input x

Output y per unit of input z

DATA ENVELOPMENT ANALYSIS (DEA) (2/2)

DEA example

		Firm 1	Firm 2	Firm 3
Outputs	Service A	110	55	22
	Service B	9.79	66	22
Input	Cost	110	165	66

- Assuming Constant Returns to Scale (CRS), it is possible to produce the output of firm 3 using 0.036 copies of firm 1 and 0.328 copies of Firm 2.
- This combination of firms could produce the same output as Firm 3 but with a lost cost of 58.1
- The efficiency score of Firm 3, therefore, is 0.88 (58.1/66.0)

Output y per unit of input z

| 21 |

PARAMETRIC TECHNIQUES: OLS, COLS

y(x)

OLS and COLS estimations

- Ordinary Least Squares (OLS) is an econometric technique applying a linear least squares method to estimate unknown parameters in a regression model
- Corrected Ordinary Least Squares (COLS) shifted downwards to the pass through the most efficient company of the sample

$$Yi = \beta o + \beta Xi + \mu i$$

 Relies on a set of statistical assumptions about the data which do not always hold (assumes the relationship is linear in the parameters, homoscedasticity etc.)

WHAT AN OLS ESTIMATION MIGHT LOOK LIKE

Step 3: Run OLS model

		Year 5		R 1 = mc	Ranked	
		Actual	Fitted		Year 5	
1	Disco 1	12.5	12.5	1	Disco 5	
2	Disco 2	11.6	12.0	2	Disco 2	
3	Disco 3	13.2	13.2	3	Disco 10	
4	Disco 4	12.1	12.1	4	Disco 3	
5	Disco 5	11.2	11.7	5	Disco 1	
6	Disco 6	11.3	11.2	6	Disco 4	
7	Disco 7	12.3	12.2	7	Disco 6	
8	Disco 8	11.9	11.7	8	Disco 7	
9	Disco 9	11.8	11.6	9	Disco 9	
10	Disco 10	11.2	11.4	10	Disco 8	

Step 2: Run OLS diagnostics

- 2. Linearity of the parameters

 - Normal distribution of the residuals

Step 4: Assign efficiency scores

PARAMETRIC TECHNIQUES: SFA

Stochastic Frontier Analysis

- SFA estimates a cost frontier from which the actual costs incurred by the businesses can be estimated (typically-using a Cobb-Douglas production function)
- Differs from OLS in two important ways:
 - It estimates a cost frontier representing the • minimum costs, rather than the average costs;
 - Separates the presence of random statistical ulletnoise from actual inefficiency incurred by the firm
- Limited number of regulators using SFA, ullettypically requires large number of comparators (data-intensive benchmarking tool)
- Sweden, Germany and Finland used SFA in lacksquarecombination with DEA

Outputs

inputs

CLOSING REMARKS

- Totex came as a natural evolution of:
 - regulatory frameworks due to shifting priorities form promoting predictability and investments towards seeking efficiency gains
 - Regulatory frameworks encouraging efficiency and innovation, including non-wire solutions, to support the energy transition
- More efficient allocation of Opex and Capex options between the regulated companies
- Complexities in implementation relate to:
 - to the determination of capitalization rates
 - Synthetic RAB, a regulatory construct, not aligning with regulatory returns on asset values (book values) which can raise concerns about transparency, cost savings and acceptability of the Totex model
 - Cost-benchmarking can be an obstacle due to limited comparable data setting allowed costs based on Totex allowance
 - Concerns about risk perceptiveness of the framework

THANK YOU FOR YOUR ATTENTION!

Ardian Berisha

Power Sector Reform Expert Managing Partner at Optima Energy Consulting <u>aberisha@optima-ec.com</u> <u>https://www.linkedin.com/en/ardianberisha</u>

