

October 14, 2025 | Ankara, Türkiye

Energy Communities in Austria

Dr. Harald Proidl E-Control

The main ideas of energy sharing

- Energy transition is available for everybody
- Everybody has the possibility to participate
- Energy transition is more **visible**
- More **independence** from the market
- Optimized and efficient use of the produced energy
- In some cases but without guarantee: reduced energy costs compared to the market

What we are doing in Austria

- We are implementing the EU legislation and transforming requirements in national legislation
- In detail:
 - Citizen Energy Communities according to the Electricity
 Market Directive
 - Renewable Energy Communities according to the Renewable Energy Directive (RED II)
 - Work in progress: implementation of energy sharing according the revised Electricity Market Directive
- Energy Communities for electricity are regulated in the Electricity Act
- No specific regulations for Energy Communities based on gas or heat
- Energey Communities are NOT a Sand Box

The cornerstones of energy sharing E-CONTROL

- **Joint production, sharing, storage** of energy → not only electricity, but also biogas and heat
- Sharing energy on **local, regional** and **national** level
- **Excluding**, traditional 'energy companies from energy sharing → energy communities operate as non-profit-organisations
- Focus on households, public entities, small enterprises
- **Main rules** (who is allowed to participate and who is not, responsibilities regarding data transfer, the role of market participants, etc.) are regulated in the **electricity act**...
- ...the details (how to share, how to finance, how to participate) must be agreed on private base
- **Aggregation** of energy services (e.g. charging stations) is possible
- All principles of the **liberalized market remain** individual meters, free choice of supplier (for full-supply)
- **Smart Meters** must be installed
- Allocation of the electricity on the basis of a ¼ h
- No net-metering

How energy sharing is subsidized

- Power plants might receive public subsidies
- The energy which is allocated among the members of RECs are subject to reduced system costs → assumption: for the RECenergy only the lower voltage levels are used and therefore the higher voltage levels are excluded from the total system costs (reduction between 40 – 60%)
- Energy used within the REC is relieved from the energy tax
- Energy used within the REC is not subject to the greenelectricity-finance-mechanism
- Administrative support for development and founding

What is implemented so far

3 Types of energy communities:

- **Jointly used generation units** in multi dwelling buildings
 - Limited to one building
 - Limited to production units in or on the building
 - All participants must be equipped with a smart meter
 - Focus: active customers in cities and densely populated areas
- Renewable Energy Communities
 - Regional or local
 - Voltage levels 7/6/5 including medium voltage bus bar (to voltage level 4)
 - Only RES (electricity, gas, heating, cooling)
 - Benefit from lower network tariffs
- Citizen Energy Communities
 - Up to nationwide level
 - Multiple DSOs involved
 - No exemptions for network tariffs

The role of the DSOs

- DSOs have to install Smart Meters among the customers (roll-out 95%)
- DSOs have to organize the calculational of the allocated energy
- DSOs have to know all contracts and mode of allocation (static or dynamic)
- DSOs have to correct the meter-standings
- DSOs have to charge the correct system costs
- DSOs have to allow energy communities without any discrimination
- Etc.

The role of the regulator

(and interaction with the DSOs)

- Setting rules for data transfer (market rules) incl. requirements for metering
- Supervision that all tasks and duties are fulfilled
- Joint working on **technical and organisational solutions**
- DSOs must provide data for **monitoring**...
- ...regulator provides **monitoring-reports and cost-benefit-analysis** (with the focus on the impact on the network tariffs)
- **Dispute settlement** in case conflicts between market participants (Energy Communities and DSOs) occur

What has happened so far

_	_	_	п.	
S			ĸ	
•	•			
3	L		\mathbf{n}	

- 30.06.2023: 364

- 31.12.2023: 867

- 30.06.2024: 1.618 with ~ 28.000 participants

- 30.06.2025: 3.868 with ~ 144.758 participants

- Introduced 2021

Most popular

 Mostly used by households but also local authorities, schools, public buildings

- Usual technology: PV

CECs:

- 30.06.2024: 247

30.06.2025: 737

- Introduced 2021

- Slow start

- Less incentivized compared to RECs

Complex technical implementation at DSO-level

Jointly used PV in multi dwelling buildings:

- 30.06.2024: 2.906

30.06.2025: 5.043

- Introduced 2017
- Forerunner of "real" energy communities
- Sharing energy within a building without using public grid

What is the impact so far?

From a technical point of view:

- The additional volume of data causes problems especially communication between grid operators, suppliers, consumers → missing data, need of calculating replacement values, etc.
- Impact on the grid infrastructure: none due to Energy Communities → the massive increase of PV causes troubles, but not directly related to Energy Communities

From the point of view of network tariffs:

- Especially the exemption from network tariffs has NO impact on the total system (so far)
- The Cost-Benefit-Analysis shows that the re-allocation of network costs has a minimum impact on the society (= payers)
- The tariff setting has still a high elasticity and allows a high number of additional Energy Communities

From the point of view of the market:

- The volume of energy which is allocated among participants of Energy Communities is still low and implies a minimal impact on the total demand = the sales of 'standard' energy suppliers do not decline due to Energy Communities
- But 'standard' energy suppliers prepare themselves for the future and develop services and models targeting Energy Communities

Next level – work in progress

Progress in the upcomming Electricity Act:

- Foster the position and possibilities of so called ,active customers'
- Further development of regulations for Energy Communities:
 - A possible change in the definition of ownership of Energy Communities
 - Allowing to join multiple Energy Communities (or similar constructs) possible limitation in joining max 5 ,constructs'
- Further development of energy sharing:
 - Introducing Peer-to-peer trading

Conclusion

- In general: Energy Communities are popular, and the numbers are growing
- DSOs represent a very important part in the realization
- Data exchange via DSOs is the most relevant but also most complex issue for the implementation of Energy Communities
- DSOs are partly still struggling (metering, transmission, communication, etc.)
- Major problem: data-exchange/communication between DSOs
 mainly relevant for CECs
- Even numbers are increasing and the interest is still high: the impact on the overall system is a minor issue

THANK YOU FOR YOUR ATTENTION!

Dr. Harald Proidlharald.proidl@e-control.at